Journal of Innovative Optical Health Sciences, Volume. 14, Issue 3, 2150009(2021)

Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy

Xiaofu Weng1... Zhouzhou Bao2,3,* and Xunbin Wei1 |Show fewer author(s)
Author Affiliations
  • 1School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
  • 2Department of Obstetrics and Gynecology Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127, P. R. China
  • 3Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127, P. R. China
  • show less
    References(37)

    [1] [1] Y. Sun, F. Ding, Z. Chen, R. Zhang, C. Li, Y. Xu, Y. Zhang, R. Ni, X. Li, G. Yang, Y. Sun, P. J. Stang, "Melanin-dot-mediated delivery of metallacycle for NIR-II/photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy," Proc. Natl. Acad. Sci. USA 116, 16729–16735 (2019).

    [2] [2] Y. Xu, Y. Zhang, J. Li, J. An, C. Li, S. Bai, A. Sharma, G. Deng, J. S. Kim, Y. Sun, "NIR-II emissive multifunctional AIEgen with single laseractivated synergistic photodynamic/photothermal therapy of cancers and pathogens," Biomaterials 259, 120315 (2020).

    [3] [3] J. Li, Y. Liu, Y. Xu, L. Li, Y. Sun, W. Huang, "Recent advances in the development of NIR-II organic emitters for biomedicine," Coord. Chem. Rev. 415, 213318 (2020).

    [4] [4] L. Tu, Y. Xu, Q. Ouyang, X. Li, Y. Sun, "Recent advances on small-molecule fluorophores with emission beyond 1000 nm for better molecular imaging in vivo," Chin. Chem. Lett. 30, 1731–1737 (2019).

    [5] [5] A. Abdurashitov, V. Tuchin and O. Semyachkina- Glushkovskaya, "Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics," J. Innov. Opt. Health Sci. 13, 2030004 (2020).

    [6] [6] S. Huang, C. I. Fong, M. Xu, B.-N. Han, Z. Yuan, Q. Zhao, "Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy," J. Innov. Opt. Health Sci. 12, 1941002 (2019).

    [7] [7] D. W. Felsher, "Photodynamic therapy for cancer," Nat. Rev. Cancer 3, 375–80 (2003).

    [8] [8] Z. Huang, H. P. Xu, A. D. Meyers, A. I. Musani, L. W. Wang, R. Tagg, A. B. Barqawi, Y. K. Chen, "Photodynamic therapy for treatment of solid tumors — Potential and technical challenges," Technol. Cancer Res. Treat. 7, 309–320 (2008).

    [9] [9] M. H. Lan, S. J. Zhao, W. M. Liu, C. S. Lee, W. J. Zhang, P. F. Wang, "Photosensitizers for photodynamic therapy," Adv. Healthc. Mater. 8, 1900132 (2019).

    [10] [10] D. Chen, M. Song, J. Huang, N. Chen, J. Xue and M. Huang, "Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment," J. Innov. Opt. Health Sci. 13, 2030009 (2020).

    [11] [11] J. Li, W. Sun, Z. Yang, G. Gao, H.-H. Ran, K.-F. Xu, Q.-Y. Duan, X. Liu, F.-G. Wu, "Rational design of self-assembled cationic porphyrin-based nanoparticles for efficient photodynamic inactivation of bacteria," ACS Appl. Mater. Interfaces 12, 54378– 54386 (2020).

    [12] [12] A. Sulek, B. Pucelik, M. Kobielusz, A. Barzowska, J. M. Dabrowski, "Photodynamic inactivation of bacteria with porphyrin derivatives: Effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro," Int. J. Mol. Sci. 21, 8716 (2020).

    [13] [13] J. Tian, B. X. Huang, M. H. Nawaz, W. A. Zhang, "Recent advances of multi-dimensional porphyrinbased functional materials in photodynamic therapy," Coord. Chem. Rev. 420, 213410 (2020).

    [14] [14] G. X. Feng, B. Liu, "Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights," Acc. Chem. Res. 51, 1404–1414 (2018).

    [15] [15] H. Qian, M. E. Cousins, E. H. Horak, A. Wakefield, M. D. Liptak, I. Aprahamian, "Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission," Nat. Chem. 9, 83–87 (2017).

    [16] [16] Y. Hong, J. W. Lam, B. Z. Tang, "Aggregationinduced emission," Chem. Soc. Rev. 40, 5361– 5388 (2011).

    [17] [17] W. Fan, B. Yung, P. Huang, X. Chen, "Nanotechnology for multimodal synergistic cancer therapy," Chem. Rev. 117, 13566–13638 (2017).

    [18] [18] B. R. He, B. Situ, Z. J. Zhao, L. Zheng, "Promising applications of AIEgens in animal models," Small Methods 4, 1900583 (2020).

    [19] [19] X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969–976 (2004).

    [20] [20] O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, "Activating efficient phosphorescence from purely organic materials by crystal design," Nat. Chem. 3, 205–210 (2011).

    [21] [21] R. Bakalova, Z. Zhelev, I. Aoki, H. Ohba, Y. Imai, I. Kanno, "Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality," Anal. Chem. 78, 5925–5932 (2006).

    [22] [22] X. W. Hua, Y. W. Bao, F. G. Wu, "Fluorescent carbon quantum dots with intrinsic nucleolustargeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery," ACS Appl. Mater. Interfaces 10, 10664–10677 (2018).

    [23] [23] N. Panwar, A. M. Soehartono, K. K. Chan, S. W. Zeng, G. X. Xu, J. L. Qu, P. Coquet, K. T. Yong and X. Y. Chen, "Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery," Chem. Rev. 119, 9559–9656 (2019).

    [24] [24] S. Kato, T. Matsumoto, T. Ishi, T. Thiemann, M. Shigeiwa, H. Gorohmaru, S. Maeda, Y. Yamashita, S. Mataka, "Strongly red-fluorescent novel donor-pibridge- acceptor-pi-bridge-donor (D-pi-A-pi-D) type 2,1,3-benzothiadiazoles with enhanced two-photon absorption cross-sections," Chem. Commun. 2004, 2342–2343 (2004).

    [25] [25] M. Liu, B. Gu, W. Wu, Y. Duan, H. Liu, X. Deng, M. Fan, X. Wang, X. Wei, K.-T. Yong, K. Wang, G. Xu, B. Liu, "Binary organic nanoparticles with bright aggregation-induced emission for threephoton brain vascular imaging," Chem. Mater. 32, 6437–6443 (2020).

    [26] [26] J.C.Ge,Q.Y. Jia, W. M. Liu, M.H. Lan, B. J. Zhou, L.Guo,H.Y. Zhou, H. Y. Zhang, Y. Wang,Y.Gu, X. M. Meng, P. F. Wang, "Carbon dots with intrinsic theranostic properties for bioimaging, red-lighttriggered photodynamic/photothermal simultaneous therapy in vitro and in vivo," Adv. Healthc. Mater. 5, 665–675 (2016).

    [27] [27] W. Pang, P. Jiang, S. Ding, Z. Bao, N. Wang, H. Wang, J. Qu, D. Wang, B. Gu, X. Wei, "Nucleolustargeted photodynamic anticancer therapy using renal-clearable carbon dots," Adv. Healthc. Mater. 9, e2000607 (2020).

    [28] [28] S. S. Lucky, K. C. Soo, Y. Zhang, "Nanoparticles in photodynamic therapy," Chem. Rev. 115, 1990– 2042 (2015).

    [29] [29] Y. Zhu, W. J. Tong, C. Y. Gao, H. Mohwald, "Fabrication of bovine serum albumin microcapsules by desolvation and destroyable crosslinking," J. Mater. Chem. 18, 1153–1158 (2008).

    [30] [30] W. Qin, D. Ding, J. Z. Liu, W. Z. Yuan, Y. Hu, B. Liu, B. Z. Tang, "Biocompatible nanoparticles with aggregation-induced emission characteristics as farred/ near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications," Adv. Funct. Mater. 22, 771–779 (2012).

    [31] [31] Y. Jiang, J. Li, Z. Zeng, C. Xie, Y. Lyu, K. Pu, "Organic photodynamic nanoinhibitor for synergistic cancer therapy," Angew. Chem. Int. Ed. Engl. 58, 8161–8165 (2019).

    [32] [32] B. J. Zhou, Y. Z. Li, G. L. Niu, M. H. Lan, Q. Y. Jia, Q. L. Liang, "Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer," ACS Appl. Mater. Interfaces 8, 29899–29905 (2016).

    [33] [33] J. M. Liang, R. X. Li, Y. W. He, C. L. Ling, Q. Wang, Y. Z. Huang, J. Qin, W. G. Lu, J. X. Wang, "A novel tumor-targeting treatment strategy uses energy restriction via co-delivery of albendazole and nanosilver," Nano Res. 11, 4507–4523 (2018).

    [34] [34] F. Yin, B. Gu, Y. Lin, N. Panwar, S. C. Tjin, J. Qu, S. P. Lau, K.-T. Yong, "Functionalized 2D nanomaterials for gene delivery applications," Coord. Chem. Rev. 347, 77–97 (2017).

    [35] [35] M. G. Adimoolam, A. Vijayalakshmi, M. R. Nalam, M. V. Sunkara, "Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy," J. Mater. Chem. B 5, 9189–9196 (2017).

    [36] [36] Y. Xu, R. He, D. Lin, M. Ji, J. Chen, "Laser beam controlled drug release from Ce6–gold nanorod composites in living cells: A FLIM study," Nanoscale 7, 2433–2441 (2015).

    [37] [37] S. Xu, Y. Yuan, X. Cai, C.-J. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang, B. Liu, "Tuning the singlet-triplet energy gap: A unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics," Chem. Sci. 6, 5824– 5830 (2015).

    Tools

    Get Citation

    Copy Citation Text

    Xiaofu Weng, Zhouzhou Bao, Xunbin Wei. Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2021, 14(3): 2150009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 9, 2020

    Accepted: Feb. 4, 2021

    Published Online: Aug. 6, 2021

    The Author Email: Bao Zhouzhou (baozhouzhou@126.com)

    DOI:10.1142/s1793545821500097

    Topics