Acta Optica Sinica, Volume. 42, Issue 23, 2327001(2022)

Optical Control of Coherent Population Transfer in Asymmetric Double Quantum-Dot System

Yu Guo1, Pengfei Liu1, and Chuancun Shu2、*
Author Affiliations
  • 1School of Physics and Electronic Science, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan , China
  • 2School of Physics and Electronics, Hunan Provincial Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, Central South University, Changsha 410012, Hunan , China
  • show less
    References(53)

    [1] Bergmann K, Theuer H, Shore B W. Coherent population transfer among quantum states of atoms and molecules[J]. Reviews of Modern Physics, 70, 1003-1025(1998).

    [2] Guo Y, Liao J Q, Kuang L M. Quantum state transfer in trapped-ion-cavity systems[J]. Chinese Physics Letters, 24, 3044-3047(2007).

    [3] Zhdanovich S, Shapiro E A, Shapiro M et al. Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment[J]. Physical Review Letters, 100, 103004(2008).

    [4] Liu Y, Guo Y, Zhou D L. Optimal transfer of an unknown state via a bipartite quantum operation[J]. EPL, 102, 50003(2013).

    [5] Stefanatos D, Paspalakis E. Optimized pulses for population transfer via laser-induced continuum structures[J]. Physical Review A, 104, 033101(2021).

    [6] Vitanov N V, Rangelov A A, Shore B W et al. Stimulated Raman adiabatic passage in physics, chemistry, and beyond[J]. Reviews of Modern Physics, 89, 015006(2017).

    [7] Fedoseev V, Luna F, Hedgepeth I et al. Stimulated Raman adiabatic passage in optomechanics[J]. Physical Review Letters, 126, 113601(2021).

    [8] Chen X, Lizuain I, Ruschhaupt A et al. Shortcut to adiabatic passage in two- and three-level atoms[J]. Physical Review Letters, 105, 123003(2010).

    [9] Guéry-Odelin D, Ruschhaupt A, Kiely A et al. Shortcuts to adiabaticity: concepts, methods, and applications[J]. Reviews of Modern Physics, 91, 045001(2019).

    [10] Luan T Z, Shen H Z, Yi X X. Shortcuts to adiabaticity with general two-level non-Hermitian systems[J]. Physical Review A, 105, 013714(2022).

    [11] Torosov B T, Guérin S, Vitanov N V. High-fidelity adiabatic passage by composite sequences of chirped pulses[J]. Physical Review Letters, 106, 233001(2011).

    [12] Guo Y, Shu C C, Dong D Y et al. Vanishing and revival of resonance Raman scattering[J]. Physical Review Letters, 123, 223202(2019).

    [13] Guo Y, Gong X, Ma S S et al. Cyclic three-level-pulse-area theorem for enantioselective state transfer of chiral molecules[J]. Physical Review A, 105, 013102(2022).

    [14] Shu C C, Ho T S, Rabitz H. Monotonic convergent quantum optimal control method with exact equality constraints on the optimized control fields[J]. Physical Review A, 93, 053418(2016).

    [15] Guo Y, Dong D Y, Shu C C. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses[J]. Physical Chemistry Chemical Physics, 20, 9498-9506(2018).

    [16] Guo Y. High fidelity and fast population transfer in a system of interacting two-level particles via optimal control[J]. International Journal of Theoretical Physics, 57, 3865-3873(2018).

    [17] Loss D, DiVincenzo D P. Quantum computation with quantum dots[J]. Physical Review A, 57, 120-126(1998).

    [18] Wang K, Xu G, Gao F et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot[J]. Nature Communications, 13, 206(2022).

    [19] Xiao S, Xu X L. On-chip chiral nanophotonic devices based on semiconductor quantum dots[J]. Acta Optica Sinica, 42, 0327009(2022).

    [20] Hu Y M, Zhang D D, Zhang J H et al. Thermal stability of CdSe/ZnS quantum dot white light device[J]. Acta Optica Sinica, 40, 0823002(2020).

    [21] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [22] Villas-Bôas J M, Govorov A O, Ulloa S E. Coherent control of tunneling in a quantum dot molecule[J]. Physical Review B, 69, 125342(2004).

    [23] Voutsinas E, Terzis A F, Paspalakis E. Control of indirect exciton population in an asymmetric quantum dot molecule[J]. Physics Letters A, 378, 219-225(2014).

    [24] Li J, Liu J, Yang X. Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure[J]. Superlattices and Microstructures, 44, 166-172(2008).

    [25] Li J H, Yu R, Si L G et al. Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 42, 055509(2009).

    [26] Peng Y D, Yang A H, Xu Y et al. Tunneling induced absorption with competing nonlinearities[J]. Scientific Reports, 6, 38251(2016).

    [27] Kosionis S G. Four-wave mixing in an asymmetric double quantum dot molecule[J]. Superlattices and Microstructures, 118, 152-159(2018).

    [28] Wang H, Zhu K D. Voltage-controlled negative refractive index in vertically coupled quantum dot systems[J]. Optics Communications, 283, 4008-4011(2010).

    [29] Peng Y D, Niu Y P, Cui N et al. Cavity linewidth narrowing by voltage-controlled induced transparency in asymmetry quantum dot molecules[J]. Optics Communications, 284, 824-827(2011).

    [30] Borges H S, Sanz L, Villas-Bôas J M et al. Tunneling induced transparency and slow light in quantum dot molecules[J]. Physical Review B, 85, 115425(2012).

    [31] Li J H, Yu R, Si L G et al. Voltage-controlled storage and retrieval of an infrared-light pulse in a quantum-dot molecule[J]. Optics Communications, 282, 2437-2441(2009).

    [32] Hu Y S, Cheng G L, Chen A X. Tunneling-induced phase grating in quantum dot molecules[J]. Optics Express, 28, 29805-29814(2020).

    [33] Sun R J, Hu Y S, Cheng G L et al. Gain-phase grating via double tunneling in quantum dot molecules[J]. Laser Physics Letters, 18, 095202(2021).

    [34] Guo H J, Chen C, Yang A H. Voltage control of electromagnetically induced grating in asymmetric double quantum dot system[J]. Laser & Optoelectronics Progress, 58, 2305001(2021).

    [35] Li J H, Yu R, Yang X X. Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides[J]. Physics Letters A, 374, 3762-3767(2010).

    [36] Cheng M T, Ma X S, Luo Y Q et al. Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits[J]. Applied Physics Letters, 99, 223509(2011).

    [37] Liu S P, Yu R, Li J H et al. Generation of a multi-qubit W entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays[J]. Journal of Applied Physics, 115, 134312(2014).

    [38] Lü X Y, Wu J, Zheng L L et al. Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules[J]. Physical Review A, 83, 042302(2011).

    [39] Yao H F, Cui N, Niu Y P et al. Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule[J]. Photonics and Nanostructures: Fundamentals and Applications, 9, 174-178(2011).

    [40] Renzoni F, Brandes T. Charge transport through quantum dots via time-varying tunnel coupling[J]. Physical Review B, 64, 245301(2001).

    [41] Ban Y, Chen X, Platero G. Fast long-range charge transfer in quantum dot arrays[J]. Nanotechnology, 29, 505201(2018).

    [42] Ban Y, Jiang L X, Li Y C et al. Fast creation and transfer of coherence in triple quantum dots by using shortcuts to adiabaticity[J]. Optics Express, 26, 31137-31149(2018).

    [43] Gullans M J, Petta J R. Coherent transport of spin by adiabatic passage in quantum dot arrays[J]. Physical Review B, 102, 155404(2020).

    [44] Shchedrin G, O’Brien C, Rostovtsev Y et al. Analytic solution and pulse area theorem for three-level atoms[J]. Physical Review A, 92, 063815(2015).

    [45] Shu C C, Hong Q Q, Guo Y et al. Orientational quantum revivals induced by a single-cycle terahertz pulse[J]. Physical Review A, 102, 063124(2020).

    [46] Shu C C, Guo Y, Yuan K J et al. Attosecond all-optical control and visualization of quantum interference between degenerate magnetic states by circularly polarized pulses[J]. Optics Letters, 45, 960-963(2020).

    [47] Ji A C, Sun Q, Xie X C et al. Josephson effect for photons in two weakly linked microcavities[J]. Physical Review Letters, 102, 023602(2009).

    [48] Qi R, Yu X L, Li Z B et al. Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps[J]. Physical Review Letters, 102, 185301(2009).

    [49] Ji A C, Xie X C, Liu W M. Quantum magnetic dynamics of polarized light in arrays of microcavities[J]. Physical Review Letters, 99, 183602(2007).

    [50] Shu C C, Ho T S, Xing X et al. Frequency domain quantum optimal control under multiple constraints[J]. Physical Review A, 93, 033417(2016).

    [51] Guo Y, Luo X B, Ma S et al. All-optical generation of quantum entangled states with strictly constrained ultrafast laser pulses[J]. Physical Review A, 100, 023409(2019).

    [52] Liu X W, Zhang G J, Li J et al. Deep learning for Feynman′s path integral in strong-field time-dependent dynamics[J]. Physical Review Letters, 124, 113202(2020).

    [53] Dong D Y, Shu C C, Chen J C et al. Learning control of quantum systems using frequency-domain optimization algorithms[J]. IEEE Transactions on Control Systems Technology, 29, 1791-1798(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yu Guo, Pengfei Liu, Chuancun Shu. Optical Control of Coherent Population Transfer in Asymmetric Double Quantum-Dot System[J]. Acta Optica Sinica, 2022, 42(23): 2327001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: May. 5, 2022

    Accepted: Jun. 13, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Shu Chuancun (cc.shu@csu.edu.cn)

    DOI:10.3788/AOS202242.2327001

    Topics