Chinese Optics Letters, Volume. 20, Issue 1, 011902(2022)

Lithium niobate microring with ultra-high Q factor above 108 On the Cover

Renhong Gao1,6, Ni Yao2, Jianglin Guan3,4, Li Deng3,4, Jintian Lin1,6、*, Min Wang3,4, Lingling Qiao1, Wei Fang5, and Ya Cheng1,3,4,6,7,8,9、**
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 2Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China
  • 3XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 4State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 5State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 6Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 7Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 8Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 9Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • show less
    References(46)

    [1] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).

    [2] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).

    [3] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [4] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [5] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).

    [6] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).

    [7] G. Li, Y. Chen, H. Jiang, X. Chen. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939(2017).

    [8] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [9] Y. He, Q.-F. Yang, J. W. Ling, R. Luo, H. X. Liang, M. X. Li, B. Q. Shen, H. M. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

    [10] C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [11] B. Mu, X. Wu, Y. Niu, Y. Chen, X. Cai, Y. Gong, Z. Xie, X. Hu, S. Zhu. Locally periodically poled LNOI ridge waveguide for second harmonic generation. Chin. Opt. Lett., 19, 060007(2021).

    [12] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [13] Y. Li, Z. Huang, W. Qiu, J. Dong, H. Guan, H. Lu. Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett., 19, 060012(2021).

    [14] A. Rao, K. Abdelsalam, T. Aardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt. Express, 27, 25920(2019).

    [15] K. Zhang, Z. Chen, H. Feng, W.-H. Wong, E. Y.-B. Pun, C. Wang. High-Q lithium niobate microring resonators using lift-off metallic masks. Chin. Opt. Lett., 19, 060010(2021).

    [16] J. Lu, J. Surya, X. Liu, Y. Xu, H. X. Tang. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492(2019).

    [17] Y. Jia, Y. Ren, X. Zhao, F. Chen. “Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction. Chin. Opt. Lett., 19, 060013(2021).

    [18] J. Zhao, C. Ma, M. Ruesing, S. Y. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [19] G.-T. Xue, Y.-F. Niu, X. Y. Liu, J.-C. Duan, W. J. Chen, Y. Pan, K. P. Jia, X. H. Wang, H.-Y. Liu, Y. Zhang, P. Xu, G. Zhao, X. L. Cai, Y.-X. Gong, X. P. Hu, Z. D. Xie, S. N. Zhu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [20] B. Fang, S. Gao, Z. Wang, S. Zhu, T. Li. Efficient second harmonic generation in silicon covered lithium niobate waveguides. Chin. Opt. Lett., 19, 060004(2021).

    [21] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [22] Y. F. Niu, C. Lin, X. Y. Liu, Y. Chen, X. P. Hu, Y. Zhang, X. L. Cai, Y.-X. Gong, Z. D. Xie, S. N. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [23] Z. J. Yu, Y. Y. Tong, H. K. Tsang, X. K. Sun. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [24] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Loncar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [25] R. B. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. W. Fang, J. H. Zhang, J. X. Zhou, L. L. Qiao, Z. F. Chai, J. T. Lin, Y. Cheng. Long low-loss-lithium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).

    [26] R. Wolf, I. Breunig, H. Zappe, K. Buse. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express, 26, 19815(2018).

    [27] J. T. Lin, J. X. Zhou, R. B. Wu, M. Wang, Z. W. Fang, W. Chu, J. H. Zhang, L. L. Qiao, Y. Cheng. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator. Micromachines, 10, 612(2019).

    [28] J. X. Zhou, R. H. Gao, J. T. Lin, M. Wang, W. Chu, W. B. Li, D. F. Yin, L. Deng, Z. W. Fang, J. H. Zhang, R. B. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [29] P. Rabiei, W. H. Steier. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett., 86, 161115(2005).

    [30] H. Hu, J. Yang, L. Gui, W. Sohler. Lithium niobate-on-insulator (LNOI): status and perspectives. Proc. SPIE, 8431, 84311D(2012).

    [31] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method. Opt. Express, 22, 27733(2014).

    [32] M. F. Volk, S. Suntsov, C. E. Rueter, D. Kip. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386(2016).

    [33] T. Ding, Y. Zheng, X. Chen. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett., 44, 1524(2019).

    [34] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to lowloss large-scale photonic integration on lithium niobateon insulator. Quantum Eng., 1, e9(2019).

    [35] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [36] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [37] P. Rabiei, P. Gunter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603(2004).

    [38] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin, J. Guan, L. Deng, M. Wang, L. Qiao, Y. Cheng. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q factor above 108(2021).

    [39] R. Wu, J. Zhang, N. Yao, W. Fang, L. L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).

    [40] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultra high-Q wedge-resonator on a silicon chip. Nat. Photon., 6, 369(2012).

    [41] J. Zhang, R. Wu, M. Wang, Z. Fang, J. Lin, J. Zhou, R. Gao, W. Chu, Y. Cheng. High-index-contrast single-mode optical waveguides fabricated on lithium niobate by photolithography assisted chemo-mechanical etching (PLACE). Jpn. J. Appl. Phys., 59, 086503(2020).

    [42] M. Oxborrow. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microwave Theory Tech., 55, 1209(2007).

    [43] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).

    [44] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319(1997).

    [45] J. Zhang, R. Wu, M. Wang, Y. Liang, J. Zhou, M. Wu, Z. Fang, W. Chu, Y. Cheng. An ultra-high-Q lithium niobate microresonator integrated with a silicon nitride waveguide in the vertical configuration for evanescent light coupling. Micromachines, 12, 235(2021).

    [46] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, K. Vahala. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon., 12, 297(2018).

    CLP Journals

    [1] Xiaoyue Liu, Shengqian Gao, Chi Zhang, Ying Pan, Rui Ma, Xian Zhang, Lin Liu, Zhenda Xie, Shining Zhu, Siyuan Yu, Xinlun Cai, "Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate," Adv. Photon. Nexus 1, 016001 (2022)

    [2] Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu, "Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk," Chin. Opt. Lett. 20, 111902 (2022)

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Renhong Gao, Ni Yao, Jianglin Guan, Li Deng, Jintian Lin, Min Wang, Lingling Qiao, Wei Fang, Ya Cheng, "Lithium niobate microring with ultra-high Q factor above 108," Chin. Opt. Lett. 20, 011902 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Sep. 9, 2021

    Accepted: Sep. 15, 2021

    Posted: Sep. 16, 2021

    Published Online: Nov. 4, 2021

    The Author Email: Jintian Lin (jintianlin@siom.ac.cn), Ya Cheng (ya.cheng@siom.ac.cn)

    DOI:10.3788/COL202220.011902

    Topics