[1] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).
[2] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287(2020).
[3] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).
[4] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).
[5] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).
[6] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).
[7] G. Li, Y. Chen, H. Jiang, X. Chen. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939(2017).
[8] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).
[9] Y. He, Q.-F. Yang, J. W. Ling, R. Luo, H. X. Liang, M. X. Li, B. Q. Shen, H. M. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).
[10] C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).
[11] B. Mu, X. Wu, Y. Niu, Y. Chen, X. Cai, Y. Gong, Z. Xie, X. Hu, S. Zhu. Locally periodically poled LNOI ridge waveguide for second harmonic generation. Chin. Opt. Lett., 19, 060007(2021).
[12] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang, F. Bo, Y. Cheng. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).
[13] Y. Li, Z. Huang, W. Qiu, J. Dong, H. Guan, H. Lu. Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett., 19, 060012(2021).
[14] A. Rao, K. Abdelsalam, T. Aardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt. Express, 27, 25920(2019).
[15] K. Zhang, Z. Chen, H. Feng, W.-H. Wong, E. Y.-B. Pun, C. Wang. High-Q lithium niobate microring resonators using lift-off metallic masks. Chin. Opt. Lett., 19, 060010(2021).
[16] J. Lu, J. Surya, X. Liu, Y. Xu, H. X. Tang. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492(2019).
[17] Y. Jia, Y. Ren, X. Zhao, F. Chen. “Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction. Chin. Opt. Lett., 19, 060013(2021).
[18] J. Zhao, C. Ma, M. Ruesing, S. Y. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).
[19] G.-T. Xue, Y.-F. Niu, X. Y. Liu, J.-C. Duan, W. J. Chen, Y. Pan, K. P. Jia, X. H. Wang, H.-Y. Liu, Y. Zhang, P. Xu, G. Zhao, X. L. Cai, Y.-X. Gong, X. P. Hu, Z. D. Xie, S. N. Zhu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).
[20] B. Fang, S. Gao, Z. Wang, S. Zhu, T. Li. Efficient second harmonic generation in silicon covered lithium niobate waveguides. Chin. Opt. Lett., 19, 060004(2021).
[21] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).
[22] Y. F. Niu, C. Lin, X. Y. Liu, Y. Chen, X. P. Hu, Y. Zhang, X. L. Cai, Y.-X. Gong, Z. D. Xie, S. N. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).
[23] Z. J. Yu, Y. Y. Tong, H. K. Tsang, X. K. Sun. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).
[24] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Loncar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).
[25] R. B. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. W. Fang, J. H. Zhang, J. X. Zhou, L. L. Qiao, Z. F. Chai, J. T. Lin, Y. Cheng. Long low-loss-lithium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).
[26] R. Wolf, I. Breunig, H. Zappe, K. Buse. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express, 26, 19815(2018).
[27] J. T. Lin, J. X. Zhou, R. B. Wu, M. Wang, Z. W. Fang, W. Chu, J. H. Zhang, L. L. Qiao, Y. Cheng. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator. Micromachines, 10, 612(2019).
[28] J. X. Zhou, R. H. Gao, J. T. Lin, M. Wang, W. Chu, W. B. Li, D. F. Yin, L. Deng, Z. W. Fang, J. H. Zhang, R. B. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).
[29] P. Rabiei, W. H. Steier. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett., 86, 161115(2005).
[30] H. Hu, J. Yang, L. Gui, W. Sohler. Lithium niobate-on-insulator (LNOI): status and perspectives. Proc. SPIE, 8431, 84311D(2012).
[31] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method. Opt. Express, 22, 27733(2014).
[32] M. F. Volk, S. Suntsov, C. E. Rueter, D. Kip. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386(2016).
[33] T. Ding, Y. Zheng, X. Chen. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett., 44, 1524(2019).
[34] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to lowloss large-scale photonic integration on lithium niobateon insulator. Quantum Eng., 1, e9(2019).
[35] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).
[36] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).
[37] P. Rabiei, P. Gunter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603(2004).
[38] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin, J. Guan, L. Deng, M. Wang, L. Qiao, Y. Cheng. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q factor above 108(2021).
[39] R. Wu, J. Zhang, N. Yao, W. Fang, L. L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).
[40] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultra high-Q wedge-resonator on a silicon chip. Nat. Photon., 6, 369(2012).
[41] J. Zhang, R. Wu, M. Wang, Z. Fang, J. Lin, J. Zhou, R. Gao, W. Chu, Y. Cheng. High-index-contrast single-mode optical waveguides fabricated on lithium niobate by photolithography assisted chemo-mechanical etching (PLACE). Jpn. J. Appl. Phys., 59, 086503(2020).
[42] M. Oxborrow. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microwave Theory Tech., 55, 1209(2007).
[43] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).
[44] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319(1997).
[45] J. Zhang, R. Wu, M. Wang, Y. Liang, J. Zhou, M. Wu, Z. Fang, W. Chu, Y. Cheng. An ultra-high-Q lithium niobate microresonator integrated with a silicon nitride waveguide in the vertical configuration for evanescent light coupling. Micromachines, 12, 235(2021).
[46] K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, K. Vahala. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon., 12, 297(2018).