International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 35001(2024)
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2
[1] [1] Li C X, Pisignano D, Zhao Y and Xue J J 2020 Advances in medical applications of additive manufacturing Engineering6 1222–31
[2] [2] Gu D D, Shi X Y, Poprawe R, Bourell D L, Setchi R and Zhu J H 2021 Material-structure-performance integrated laser-metal additive manufacturing Science 372 eabg1487
[3] [3] Lütjering G and William J C 2007 Commercially pure (CP) titanium and alpha alloys Titanium (Engineering Materials and Processes) ed B Derby (Springer) pp 175–201
[4] [4] DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W,Milewski J O, Beese A M, Wilson-Heid A, De A and Zhang W 2018 Additive manufacturing of metallic components—process, structure and properties Prog. Mater.Sci. 92 112–224
[5] [5] Liu S Y and Shin Y C 2019 Additive manufacturing of Ti6Al4V alloy: a review Mater. Des. 164 107552
[6] [6] Cai C, Radoslaw C, Zhang J L, Yan Q, Wen S F, Song B and Shi Y S 2019 In-situ preparation and formation of TiB/Ti-6Al-4V nanocomposite via laser additive manufacturing: microstructure evolution and tribological behavior Powder Technol. 342 73–84
[7] [7] Attar H, B?nisch M, Calin M, Zhang L C, Scudino S and Eckert J 2014 Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties Acta Mater.76 13–22
[8] [8] Cai C, Qiu J C D, Shian T W, Han C J, Liu T, Kong L B,Srikanth N, Sun C N and Zhou K 2021 Laser powder bed fusion of Mo2C/Ti-6Al-4V composites with alternately laminated α′/β phases for enhanced mechanical properties Addit. Manuf. 46 102134
[9] [9] Han C J, Babicheva R, Chua J D Q, Ramamurty U, Tor S B,Sun C N and Zhou K 2020 Microstructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders Addit.Manuf. 36 101466
[10] [10] Barriobero-Vila P, Gussone J, Stark A, Schell N, Haubrich J and Requena G 2018 Peritectic titanium alloys for 3D printing Nat. Commun. 9 3426
[11] [11] Xu W, Xiao S Q, Lu X, Chen G, Liu C C and Qu X H 2019 Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling J. Mater. Sci. Technol. 35 322–7
[12] [12] Dadbakhsh S, Mertens R, Ji G, Vrancken B, Vanmeensel K,Fan H Y, Addad A and Kruth J P 2020 Heat treatment possibilities for an in situ βTi-TiC composite made by laser powder bed fusion Addit. Manuf. 36 101577
[13] [13] Gu D D, Meng G B, Li C, Meiners W and Poprawe R 2012 Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement Scr. Mater. 67 185–8
[14] [14] Fereiduni E, Ghasemi A and Elbestawi M 2019 Selective laser melting of hybrid ex-situ/in-situ reinforced titanium matrix composites: laser/powder interaction, reinforcement formation mechanism, and non-equilibrium microstructural evolutions Mater. Des. 184 108185
[15] [15] Shuai C J, Li D S, Yao X, Li X and Gao C D 2023 Additive manufacturing of promising heterostructure for biomedical applications Int. J. Extrem. Manuf. 5 032012
[16] [16] Mao L B et al 2016 Synthetic nacre by predesigned matrix-directed mineralization Science 354 107–10
[17] [17] Sui S, Chew Y, Weng F, Tan C L, Du Z L and Bi G J 2022 Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V Int. J. Extrem. Manuf.4 035102
[18] [18] Kürnsteiner P, Wilms M B, Weisheit A, Gault B, J?gle E A and Raabe D 2020 High-strength Damascus steel by additive manufacturing Nature 582 515–9
[19] [19] Liu L, Yu Q, Wang Z, Ell J, Huang M X and Ritchie R O 2020 Making ultrastrong steel tough by grain-boundary delamination Science 368 1347–52
[20] [20] Aboulkhair N T, Simonelli M, Parry L, Ashcroft I, Tuck C and Hague R 2019 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting Prog. Mater. Sci. 106 100578
[21] [21] Ren J et al 2022 Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing Nature 608 62–68
[22] [22] Guo S, Chen M, Wei Y, You L M, Cai C, Wei Q S and Zhou K 2023 Designing hierarchically porous zero-valent iron via 3D printing to degrade organic pollutants by activating peroxymonosulfate using high-valent iron-oxo species Chem. Eng. J. 476 146523
[23] [23] Gao Z Q, Yin J, Liu P, Li Q, Zhang R N, Yang H Y and Zhou H Z 2023 Simultaneous multi-material embedded printing for 3D heterogeneous structures Int. J. Extrem.Manuf. 5 035001
[24] [24] Liu L Q, Wang D, Deng G W, Han C J, Yang Y Q, Chen J,Chen X X, Liu Y and Bai Y C 2022 Laser additive manufacturing of a 316L/CuSn10 multimaterial coaxial nozzle to alleviate spattering adhesion and burning effect in directed energy deposition J. Manuf. Process. 82 51–63
[25] [25] Chen J, Yang Y Q, Song C H, Zhang M K, Wu S B and Wang D 2019 Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting Mater. Sci.Eng. A 752 75–85
[26] [26] Wang R, Gu D D, Lin K J, Chen C Y, Ge Q and Li D L 2022 Multi-material additive manufacturing of a bio-inspired layered ceramic/metal structure: formation mechanisms and mechanical properties Int. J. Mach. Tools Manuf.175 103872
[27] [27] Wei C, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extrem. Manuf. 3 012003
[28] [28] Wang D W, Zhou Y H, Shen J, Liu Y, Li D F, Zhou Q, Sha G,Xu P, Ebel T and Yan M 2019 Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility Mater. Sci. Eng. A 762 138078
[29] [29] Liu L T, Chen C Y, Zhao R X, Wang X D, Tao H, Shuai S S,Wang J, Liao H L and Ren Z M 2021 In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance Addit. Manuf. 46 102142
[30] [30] Xiao Y M, Yang Y Q, Wang D, Liu L Q, Liu Z B, Wu S B,Zhou H X, Liu Z X and Song C 2023 In-situ synthesis of high strength and toughness TiN/Ti6Al4V sandwich composites by laser powder bed fusion under a nitrogen-containing atmosphere Composites B 253 110534
[31] [31] Conrad H 1981 Effect of interstitial solutes on the strength and ductility of titanium Prog. Mater. Sci. 26 123–403
[32] [32] Issariyapat A, Kariya S, Shitara K, Umeda J and Kondoh K 2022 Solute-induced near-isotropic performance of laser powder bed fusion manufactured pure titanium Addit.Manuf. 56 102907
[33] [33] Mukherjee T, Wei H L, De A and DebRoy T 2018 Heat and fluid flow in additive manufacturing—part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys Comput. Mater. Sci. 150 369–80
[34] [34] Kamat A M, Copley S M and Todd J A 2016 Effect of processing parameters on microstructure during laser-sustained plasma (LSP) nitriding of commercially-pure titanium Acta Mater. 107 72–82
[35] [35] Xiao Y M, Yang Y Q, Wu S B, Chen J, Wang D and Song C H 2022 Microstructure and mechanical properties of AlSi10Mg alloy manufactured by laser powder bed fusion under nitrogen and argon atmosphere Acta Metall. Sin.35 486–500
[36] [36] ISO 6892-1 2019 Metallic materials—tensile testing—part 1:method of test at room temperature (CEN-CENELEC)
[37] [37] Mohseni H, Nandwana P, Tsoi A, Banerjee R and Scharf T W 2015 In situ nitrided titanium alloys: microstructural evolution during solidification and wear Acta Mater.83 61–74
[38] [38] Dong Y P et al 2023 Strong and ductile titanium via additive manufacturing under a reactive atmosphere Mater. Today Adv. 17 100347
[39] [39] Bragg W H and Bragg W L 1913 The reflection of x-rays by crystals Proc. R. Soc. A 88 428–38
[40] [40] Dahotre S N, Vora H D, Pavani K and Banerjee R 2013 An integrated experimental and computational approach to laser surface nitriding of Ti–6Al–4V Appl. Surf. Sci. 271 141–8
[41] [41] Morton P A, Taylor H C, Murr L E, Delgado O G,Terrazas C A and Wicker R B 2020 In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion J. Mater. Sci. Technol. 45 98–107
[42] [42] Rakesh C H S, Priyanka N, Jayaganthan R and Vasa N J 2018 Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting Mater. Today5 17231–8
[43] [43] Ataee A, Li Y C, Brandt M and Wen C E 2018 Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications Acta Mater. 158 354–68
[44] [44] Attar H, Calin M, Zhang L C, Scudino S and Eckert J 2014 Manufacture by selective laser melting and mechanical behavior of commercially pure titanium Mater. Sci. Eng. A 593 170–7
[45] [45] Beladi H, Chao Q and Rohrer G S 2014 Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy Acta Mater. 80 478–89
[46] [46] Su J L, Jiang F L, Tan C L, Weng F, Ng F L, Goh M H, Xie H M, Liu J, Chew Y and Teng J 2023 Additive manufacturing of fine-grained high-strength titanium alloy via multi-eutectoid elements alloying Composites B 249 110399
[47] [47] Issariyapat A, Visuttipitukul P, Umeda J and Kondoh K 2020 Refined grain formation behavior and strengthening mechanism of α-titanium with nitrogen fabricated by selective laser melting Addit. Manuf. 36 101537
[48] [48] Wysocki B, Maj P, Krawczy′nska A, Ro˙zniatowski K,Zdunek J, Kurzyd?owski K J and ′Swie?szkowski W 2017 Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM) J.Mater. Process. Technol. 241 13–23
[49] [49] Kurtz S R and Gordon R G 1986 Chemical vapor deposition of titanium nitride at low temperatures Thin Solid Films140 277–90
[50] [50] Zhao C, Parab N D, Li X X, Fezzaa K, Tan W D, Rollett A D and Sun T 2020 Critical instability at moving keyhole tip generates porosity in laser melting Science 370 1080–6
[51] [51] Bandyopadhyay A, Mitra I, Ciliveri S, Avila J D, Dernell W, Goodman S B and Bose S 2024 Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants Int. J. Extrem. Manuf. 6 015503
[52] [52] Wang D, Wang H, Chen X J, Liu Y, Lu D, Liu X Y and Han C J 2022 Densification, tailored microstructure, and mechanical properties of selective laser melted Ti-6Al-4V alloy via annealing heat treatment Micromachines 13 331
[53] [53] Tan C L, Chew Y, Weng F, Sui S, Ng F L, Liu T and Bi G J 2022 Laser aided additive manufacturing of spatially heterostructured steels Int. J. Mach. Tools Manuf.172 103817
[54] [54] Tan C L, Liu Y C, Weng F, Ng F L, Su J L, Xu Z K, Ngai X D and Chew Y X 2022 Additive manufacturing of voxelized heterostructured materials with hierarchical phases Addit.Manuf. 54 102775
[55] [55] Wu X L, Zhu Y T, Wei Y G and Wei Q 2009 Strong strain hardening in nanocrystalline nickel Phys. Rev. Lett.103 205504
[56] [56] Wriedt H A and Murray J L 1987 The N-Ti (nitrogen-titanium) system Bull. Alloy Phase Diagrams 8 378–88
[57] [57] Labusch R 1970 A statistical theory of solid solution hardening Phys. Status Solidi b 41 659–69
[58] [58] Hall E O 1951 The deformation and ageing of mild steel: III discussion of results Proc. Phys. Soc. B64 747–53
[59] [59] Kang N, Yuan H, Coddet P, Ren Z M, Bernage C, Liao H L and Coddet C 2017 On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field Mater. Sci.Eng. C 70 405–7
[60] [60] Zhang D Y, Qiu D, Gibson M A, Zheng Y F, Fraser H L, StJohn D H and Easton M A 2019 Additive manufacturing of ultrafine-grained high-strength titanium alloys Nature 576 91–95
[61] [61] Zhao D L, Han C J, Li J, Liu J and Wei Q S 2020 In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting Mater. Sci.Eng. C 111 110784
[62] [62] Ma G Y, Yu C, Tang B K, Li Y, Niu F Y, Wu D J, Bi G J and Liu S B 2020 High-mass-proportion TiCp/Ti6Al4V titanium matrix composites prepared by directed energy deposition Addit. Manuf. 35 101323
[63] [63] Tao Q Y et al 2020 Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off Addit. Manuf. 34 101198
[64] [64] Hou Y H, Liu B, Liu Y, Zhou Y H, Song T T, Zhou Q, Sha G and Yan M 2019 Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated Opto-Electron. Adv. 2 180028
[65] [65] Zhu Y T and Wu X L 2023 Heterostructured materials Prog.Mater. Sci. 131 101019
[66] [66] Wu X L and Zhu Y T 2017 Heterogeneous materials: a new class of materials with unprecedented mechanical properties Mater. Res. Lett. 5 527–32
[67] [67] Huang C X, Wang Y F, Ma X L, Yin S, H?ppel H W,G?ken M, Wu X L, Gao H J and Zhu Y T 2018 Interface affected zone for optimal strength and ductility in heterogeneous laminate Mater. Today 21 713–9
[68] [68] Wu X L, Yang M X, Yuan F P, Wu G L, Wei Y J, Huang X X and Zhu Y T 2015 Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility Proc. Natl Acad. Sci. USA 112 14501–5
Get Citation
Copy Citation Text
Yunmian Xiao, Changhui Song, Zibin Liu, Linqing Liu, Hanxiang Zhou, Di Wang, Yongqiang Yang. In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N2[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 35001
Received: Aug. 31, 2023
Accepted: --
Published Online: Sep. 11, 2024
The Author Email: Song Changhui (chsong@scut.edu.cn)