Infrared and Laser Engineering, Volume. 49, Issue 1, 103005(2020)

InP-based free running mode single photon avalanche photodiode

Shi Yanli1,2、*, Zhu Hongxia1,2, Yang Xueyan1,2, Zeng Hui1,2, Li Zaibo1,2, Liu Chen1,2, Wang Jian1,2, and Wang Wei1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(46)

    [1] [1] Levine B F, Bethea C G, Campbell J C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector[J]. Applied Physics Letters, 1985, 46(4): 333-335.

              Levine B F, Bethea C G, Campbell J C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector[J]. Applied Physics Letters, 1985, 46(4): 333-335.

    [2] [2] Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum commu-nication[J]. Light: Science & Applications, 2015, 4(5): e286

              Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum commu-nication[J]. Light: Science & Applications, 2015, 4(5): e286

    [3] [3] Stucki D, Ribordy GréGoire, Stefanov André, et al. Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs[J]. Journal of Modern Optics, 2001, 48(13): 1967-1981.

              Stucki D, Ribordy GréGoire, Stefanov André, et al. Photon counting for quantum key distribution with peltier cooled InGaAs/InP APDs[J]. Journal of Modern Optics, 2001, 48(13): 1967-1981.

    [5] [5] Ren M, Gu X, Liang Y, et al. Laser ranging at 1 550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 2011, 19(14): 13497-502.

              Ren M, Gu X, Liang Y, et al. Laser ranging at 1 550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector[J]. Optics Express, 2011, 19(14): 13497-502.

    [6] [6] Kapusta P, Wahl M, Erdmann R. Advanced Photon Counting: Applications, Methods, Instrumentation[M]. Berlin Heidelberg: Springer-Verlag, 2015.

              Kapusta P, Wahl M, Erdmann R. Advanced Photon Counting: Applications, Methods, Instrumentation[M]. Berlin Heidelberg: Springer-Verlag, 2015.

    [7] [7] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 2017, 25(10): 11919.

              Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 2017, 25(10): 11919.

    [8] [8] Zhao K, Zhang A, Lo Y H, et al. InGaAs single photon avalanche detector with ultralow excess noise[J]. Applied Physics Letters, 2007, 91(8): 081107

              Zhao K, Zhang A, Lo Y H, et al. InGaAs single photon avalanche detector with ultralow excess noise[J]. Applied Physics Letters, 2007, 91(8): 081107

    [9] [9] Itzler M A, Jiang X, Nyman B, et al. InP-based negative feedback avalanche diodes[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7222(1): 54-68.

              Itzler M A, Jiang X, Nyman B, et al. InP-based negative feedback avalanche diodes[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7222(1): 54-68.

    [10] [10] Hu Weida, Li Qing, Wen Jie, et al. InGaAs/InP research status and progress of infrared avalanche photodetector[J]. Infrared Technolgoy, 2018, 40(3): 201-208. (in Chinese)

              Hu Weida, Li Qing, Wen Jie, et al. InGaAs/InP research status and progress of infrared avalanche photodetector[J]. Infrared Technolgoy, 2018, 40(3): 201-208. (in Chinese)

    [11] [11] Jiang W H, Gao X J, Fang Y Q, et al. Miniaturized high-frequency sine wave gating InGaAs/InP single-photon detector[J]. Review of Scientific Instruments, 2018, 89(12): 123104.

              Jiang W H, Gao X J, Fang Y Q, et al. Miniaturized high-frequency sine wave gating InGaAs/InP single-photon detector[J]. Review of Scientific Instruments, 2018, 89(12): 123104.

    [12] [12] Liu M, Bai X, Hu C, et al. Low dark count rate and high single-photon detection efficiency avalanche photodiode in geiger-mode operation[J]. IEEE Photonics Technology Letters, 2007, 19(6): 378-380.

              Liu M, Bai X, Hu C, et al. Low dark count rate and high single-photon detection efficiency avalanche photodiode in geiger-mode operation[J]. IEEE Photonics Technology Letters, 2007, 19(6): 378-380.

    [13] [13] Liang Y, Fei Q, Liu Z, et al. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics Research, 2019(3): DOI: 10.1364/prj.7.0000a1.

              Liang Y, Fei Q, Liu Z, et al. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics Research, 2019(3): DOI: 10.1364/prj.7.0000a1.

    [14] [14] Liang Y, Chen Y, Huang Z, et al. Room-temperature single-photon detection with 1.5-GHz Gated InGaAs/InP avalanche photodiode[J]. IEEE Photonics Technology Letters, 2016, 29(1): 142-145.

              Liang Y, Chen Y, Huang Z, et al. Room-temperature single-photon detection with 1.5-GHz Gated InGaAs/InP avalanche photodiode[J]. IEEE Photonics Technology Letters, 2016, 29(1): 142-145.

    [16] [16] Prirnceton Lightwave. PGA series single photon counting avalanche[EB/OL]. Photodiodes. https://www.docin.com/p-1858751631.html, 2017-3-3/2019-10-13.

              Prirnceton Lightwave. PGA series single photon counting avalanche[EB/OL]. Photodiodes. https://www.docin.com/p-1858751631.html, 2017-3-3/2019-10-13.

    [17] [17] Kai Z. III-V single photon avalanche detector with built-in negative feedback for NIR photon detection[D]. San Diego: University of California, 2008.

              Kai Z. III-V single photon avalanche detector with built-in negative feedback for NIR photon detection[D]. San Diego: University of California, 2008.

    [18] [18] Cheng, J. Self-quenched InGaAs single-photon detector[C]// Proceedings of SPIE, 2009, 7320: 732010.

              Cheng, J. Self-quenched InGaAs single-photon detector[C]// Proceedings of SPIE, 2009, 7320: 732010.

    [19] [19] Zhao K, Zhang A, Farr W, et al. Ultra low noise InGaAs single photon detector with transient carrier buffer[C]// LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007: 447-448.

              Zhao K, Zhang A, Farr W, et al. Ultra low noise InGaAs single photon detector with transient carrier buffer[C]// LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007: 447-448.

    [20] [20] You S , Cheng J, Lo Y H. Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities[J]. IEEE Journal of Quantum Electronics, 2012, 48(7): 960-967.

              You S , Cheng J, Lo Y H. Physics of single photon avalanche detectors with built-in self-quenching and self-recovering capabilities[J]. IEEE Journal of Quantum Electronics, 2012, 48(7): 960-967.

    [21] [21] Jiang X, Itzler M A, O′Donnell, Kevin, et al. Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers[J]. Optical Engineering, 2014, 53(8): 081908.

              Jiang X, Itzler M A, O′Donnell, Kevin, et al. Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers[J]. Optical Engineering, 2014, 53(8): 081908.

    [22] [22] Jiang Xudong, Mark A Itzler, Kevin O'Donnell, et al. InGaAs/InP negative-feedback avalanche diodes(NFADs) and solid state photomultipliers (SSPMs)[C]//Proc SPIE, Advanced Photon Counting Techniques VI, 2012, 8375: 83750U.

              Jiang Xudong, Mark A Itzler, Kevin O'Donnell, et al. InGaAs/InP negative-feedback avalanche diodes(NFADs) and solid state photomultipliers (SSPMs)[C]//Proc SPIE, Advanced Photon Counting Techniques VI, 2012, 8375: 83750U.

    [23] [23] Bin Yang. Investigation and application of type II superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54, 64.

              Bin Yang. Investigation and application of type II superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54, 64.

    [24] [24] Chuan Jin, Jianxin Chen, Chengzhang Yu, et al. InGaAs/GaAsSb Class II superlattice shortwave infrared detection materials and device characteristics[C]//National Conference on Molecular Beam Epitaxial, 2015.

              Chuan Jin, Jianxin Chen, Chengzhang Yu, et al. InGaAs/GaAsSb Class II superlattice shortwave infrared detection materials and device characteristics[C]//National Conference on Molecular Beam Epitaxial, 2015.

    [25] [25] Onat B M, Slomkowski K, Itzler M. Extended wavelength InGaAs-Based avalanche photodiodes for single photon counting applications[C]//Photonics Conference. IEEE, 2012.

              Onat B M, Slomkowski K, Itzler M. Extended wavelength InGaAs-Based avalanche photodiodes for single photon counting applications[C]//Photonics Conference. IEEE, 2012.

    Tools

    Get Citation

    Copy Citation Text

    Shi Yanli, Zhu Hongxia, Yang Xueyan, Zeng Hui, Li Zaibo, Liu Chen, Wang Jian, Wang Wei. InP-based free running mode single photon avalanche photodiode[J]. Infrared and Laser Engineering, 2020, 49(1): 103005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏———新型红外器件

    Received: Oct. 5, 2019

    Accepted: Nov. 15, 2019

    Published Online: Jun. 8, 2020

    The Author Email: Yanli Shi (ylshikm@hotmail.com)

    DOI:10.3788/irla202049.0103005

    Topics