Journal of Synthetic Crystals, Volume. 53, Issue 11, 1909(2024)
Valence Regulation and Optical Properties of Cr-Doped YAG Transparent Ceramics
[3] [3] YAGI H, TAKAICHI K, UEDA K, et al. The physical properties of composite YAG ceramics[J]. Laser Physics, 2005, 15(9): 1338-1344.
[4] [4] TANG F, CAO Y G, HUANG J Q, et al. Fabrication and laser behavior of composite Yb∶YAG ceramic[J]. Journal of the American Ceramic Society, 2012, 95(1): 56-69.
[5] [5] YAGI H, TAKAICHI K, UEDA K I, et al. Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12[J]. Optical Materials, 2006, 29(4): 392-396.
[6] [6] CHEN X T, LU T C, WEI N, et al. Fabrication and photoluminescence properties of Cr∶YAG and Yb, Cr∶YAG transparent ceramic[J]. Optical Materials, 2015, 49: 330-336.
[7] [7] ZHOU T Y, ZHANG L, LI Z, et al. Enhanced conversion efficiency of Cr4+ ion in Cr∶YAG transparent ceramic by optimizing the annealing process and doping concentration[J]. Journal of Alloys and Compounds, 2017, 703: 34-39.
[8] [8] DOROSHENKO A G, YAVETSKIY R P, PARKHOMENKO S V, et al. Effect of the sintering temperature on the microstructure and optical properties of YAG∶Cr, Mg ceramics[J]. Optical Materials, 2019, 98: 109505.
[9] [9] CHAIKA M, MANCARDI G, TOMALA R, et al. Effects of divalent dopants on the microstructure and conversion efficiency of Cr4+ ions in Cr, Me∶YAG (Me-Ca, Mg, Ca/Mg) transparent ceramics[J]. Processing and Application of Ceramics, 2020, 14(1): 83-89.
[10] [10] GOBIEWSKI P, WGLARZ H, NAKIELSKA M, et al. Effect of Ca2+ and Mg2+ ions on the sintering and spectroscopic properties of Cr-doped yttrium aluminum garnet ceramics[J]. International Journal of Applied Ceramic Technology, 2021, 18(3): 697-704.
[12] [12] IKESUE A, AUNG Y L. Synthesis of Yb∶YAG ceramics without sintering additives and their performance[J]. Journal of the American Ceramic Society, 2017, 100(1): 26-30.
[13] [13] AUNG Y L, IKESUE A. Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material[J]. Journal of the American Ceramic Society, 2017, 100(9): 4081-4087.
[14] [14] FENG Y G, LIU Z Y, TOCI G, et al. Fabrication, microstructure, spectral properties, and laser performance of Yb∶GdxY3-xAl5O12 ceramics[J]. Journal of the American Ceramic Society, 2024, 107(6): 4134-4146.
[15] [15] ZHANG L, ZHOU T Y, SELIM F A, et al. Single CaO accelerated densification and microstructure control of highly transparent YAG ceramic[J]. Journal of the American Ceramic Society, 2018, 101(2): 703-712.
[16] [16] ZHOU T Y, ZHANG L, LI Z, et al. Toward vacuum sintering of YAG transparent ceramic using divalent dopant as sintering aids: investigation of microstructural evolution and optical property[J]. Ceramics International, 2017, 43(3): 3140-3146.
[17] [17] SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B, 1969, 25(5): 925-946.
[18] [18] MARKGRAF S A, PANGBORN M F, DIECKMANN R. Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12[J]. Journal of Crystal Growth, 1997, 180(1): 81-84.
[19] [19] PERRIRE C, BOULESTEIX R, MATRE A, et al. Study of sintering mechanisms of Ca-doped yttrium aluminum garnet ceramics: from nanostructure to macroscopic behaviour[J]. Journal of the European Ceramic Society, 2023, 43(2): 565-575.
[20] [20] VORONA I, BALABANOV A, DOBROTVORSKA M, et al. Effect of MgO doping on the structure and optical properties of YAG transparent ceramics[J]. Journal of the European Ceramic Society, 2020, 40(3): 861-866.
[21] [21] PERRIRE C, BOULESTEIX R, MATRE A, et al. Study of dopant distribution in Cr4+∶YAG transparent ceramics and its use as passively Q-switching media in Nd∶YAG laser delivering 38 mJ per pulse[J]. Optical Materials: X, 2021, 12: 100107.
[22] [22] ZHOU T Y, ZHANG L, WEI S, et al. MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution[J]. Journal of the European Ceramic Society, 2018, 38(2): 687-693.
[23] [23] ZHANG P D, CHAI B Y, JIANG B X, et al. High transparency Cr, Nd∶LuAG ceramics prepared with MgO additive[J]. Journal of the European Ceramic Society, 2017, 37(6): 2459-2463.
[24] [24] CHEN X T, WU Y Q, LU Z W, et al. Assessment of conversion efficiency of Cr4+ ions by aliovalent cation additives in Cr∶YAG ceramic for edge cladding[J]. Journal of the American Ceramic Society, 2018, 101(11): 5098-5109.
[26] [26] WALL W A, KARPICK J T, DI BARTOLO B. Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG∶Cr3+[J]. Journal of Physics C: Solid State Physics, 1971, 4(18): 3258-3264.
[27] [27] BURNS G, GEISS E A, JENKINS B A, et al. Cr3+ fluorescence in garnets and other crystals[J]. Physical Review, 1965, 139(5A): 1687-1693.
[28] [28] CHAIKA M A, DULINA N A, DOROSHENKO A G, et al. Influence of calcium concentration on formation of tetravalent chromium doped Y3Al5O12 ceramics[J]. Ceramics International, 2018, 44(12): 13513-13519.
[29] [29] ZHOU T Y, ZHANG L, ZHANG J, et al. Improved conversion efficiency of Cr4+ ions in Cr∶YAG transparent ceramics by optimization the particle sizes of sintering aids[J]. Optical Materials, 2015, 50: 11-14.
Get Citation
Copy Citation Text
HUANG Qiufeng, DENG Zhiqiang, CHEN Jian, GUO Wang, DENG Zhonghua, LIU Zhuguang, HUANG Jiquan. Valence Regulation and Optical Properties of Cr-Doped YAG Transparent Ceramics[J]. Journal of Synthetic Crystals, 2024, 53(11): 1909
Category:
Received: Sep. 5, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: Wang GUO (guowang@fjirsm.ac.cn)
CSTR:32186.14.