Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 625(2022)
Flexible Piezoelectric Materials and Device Application
[1] [1] XU Q, GAO X, ZHAO S, et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications[J]. Adv Mater, 2021, 33(27): 2008452.
[2] [2] DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mech Lett, 2016, 9: 269-281.
[3] [3] SAFAEI M, SODANO H A, ANTON S R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)[J]. Smart Mater Struct, 2019, 28(11): 113001.
[4] [4] ALI F, RAZA W, LI X, et al. Piezoelectric energy harvesters for biomedical applications[J]. Nano Energy, 2019, 57: 879-902.
[5] [5] LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nat Mater, 2018, 17(4): 349-354.
[6] [6] MA N, ZHANG B P, YANG W G, et al. Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics[J]. J Eur Ceram Soc, 2012, 32(5): 1059-1066.
[7] [7] ZHANG S, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. J Appl Phys, 2012, 111(3): 031301.
[8] [8] WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
[9] [9] YOU Y M, LIAO W Q, ZHAO D, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response[J]. Science, 2017, 357(6348): 306-309.
[10] [10] LIU Y, AZIGULI H, ZHANG B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary[J]. Nature, 2018, 562(7725): 96-100.
[11] [11] ANWAR S, AMIRI M H, JIANG S, et al. Piezoelectric nylon-11 fibers for electronic textiles, energy harvesting and sensing[J]. Adv Funct Mater, 2021, 31(4): 2004326.
[14] [14] GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3 [J]. Phys Rev Lett, 2000, 84(23): 5423-5426.
[15] [15] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. ACS Nano, 2017, 11(5): 4507-4513.
[16] [16] SONG K, LI Q, GUO H, et al. Composition and electrical properties characterization of a 5” diameter PIN-PMN-PT single crystal by the modified bridgman method[J]. J Alloys Compd, 2021, 851: 156145.
[17] [17] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Adv Mater, 2014, 26(16): 2514-2520.
[19] [19] GU L, LIU J, CUI N, et al. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode[J]. Nat Commun, 2020, 11(1): 1030.
[20] [20] JOO H, LEE Y, KIM J, et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures[J]. Sci Adv, 2021, 7(1): eabd4639.
[21] [21] KIM E H, CHO S H, LEE J H, et al. Organic light emitting board for dynamic interactive display[J]. Nat Commun, 2017, 8(1): 14964.
[22] [22] BYUN S H, SIM J Y, ZHOU Z, et al. Mechanically transformative electronics, sensors, and implantable devices[J]. Sci Adv, 2019, 5(11): eaay0418.
[23] [23] WANG D, YUAN G, HAO G, et al. All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica[J]. Nano Energy, 2018, 43: 351-358.
[24] [24] LIU H, ZHONG J, LEE C, et al. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications[J]. Appl Phys Rev, 2018, 5(4): 041306.
[25] [25] ZHANG Q M, BHARTI V, ZHAO X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science, 1998, 280(5372): 2101-2104.
[26] [26] MAITY K, GARAIN S, HENKEL K, et al. Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor[J]. ACS Appl Polym Mater, 2020, 2(2): 862-878.
[27] [27] GUO Y, ZHANG X S, WANG Y, et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring[J]. Nano Energy, 2018, 48: 152-160.
[28] [28] PI Z, ZHANG J, WEN C, et al. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film[J]. Nano Energy, 2014, 7: 33-41.
[29] [29] KIM J, LEE J H, RYU H, et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment[J]. Adv Funct Mater, 2017, 27(22): 1700702.
[30] [30] SENCADAS V, JR R G, LANCEROS MNDEZ S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch[J]. J Macromol Sci Part B, 2009, 48(3): 514-525.
[31] [31] LI L, ZHANG M, RONG M, et al. Studies on the transformation process of PVDF from α to β phase by stretching[J]. RSC Adv, 2013, 4(8): 3938-3943.
[32] [32] PERSANO L, DAGDEVIREN C, SU Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)[J]. Nat Commun, 2013, 4(1): 1633.
[33] [33] PAN H, NA B, LV R, et al. Polar phase formation in poly(vinylidene fluoride) induced by melt annealing[J]. J Polym Sci Part B Polym Phys, 2012, 50(20): 1433-1437.
[34] [34] LU L, DING W, LIU J, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[35] [35] JELLA V, IPPILI S, EOM J H, et al. Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3- PVDF composite films[J]. Nano Energy, 2018, 53: 46-56.
[36] [36] KOKA A, ZHOU Z, SODANO H A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting[J]. Energy Environ Sci, 2014, 7(1): 288-296.
[37] [37] KOKA A, SODANO H A. High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays[J]. Nat Commun, 2013, 4(1): 2682.
[38] [38] GUAN X, XU B, GONG J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy, 2020, 70: 104516.
[39] [39] PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Adv Mater, 2012, 24(22): 2999-3004.
[40] [40] FU J, HOU Y, GAO X, et al. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy, 2018, 52: 391-401.
[41] [41] SHIN S H, KIM Y H, LEE M H, et al. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator[J]. ACS Nano, 2014, 8(3): 2766-2773.
[42] [42] JEONG C K, BAEK C, KINGON A I, et al. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19): 1704022.
[43] [43] JUNG J H, LEE M, HONG J I, et al. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. ACS Nano, 2011, 5(12): 10041-10046.
[44] [44] IPPILI S, JELLA V, EOM J H, et al. An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films[J]. Nano Energy, 2019, 57: 911-923.
[45] [45] TIAN G, DENG W, GAO Y, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training[J]. Nano Energy, 2019, 59: 574-581.
[46] [46] LEE E J, KIM T Y, KIM S W, et al. High-performance piezoelectric nanogenerators based on chemically-reinforced composites[J]. Energy Environ Sci, 2018, 11(6): 1425-1430.
[47] [47] ZHANG G, ZHAO P, ZHANG X, et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting[J]. Energy Environ Sci, 2018, 11(8): 2046-2056.
[48] [48] LI W, LI C, ZHANG G, et al. Molecular ferroelectric-based flexible sensors exhibiting supersensitivity and multimodal capability for detection[J]. Adv Mater, 2021, 33: 2104107.
[49] [49] KIM T, CUI Z, CHANG W Y, et al. Flexible 1-3 composite ultrasound transducers with silver-nanowire-based stretchable electrodes[J]. IEEE Trans Ind Electron, 2020, 67(8): 6955-6962.
[50] [50] YAN M, ZHONG J, LIU S, et al. Flexible pillar-base structured piezocomposite with aligned porosity for piezoelectric energy harvesting[J]. Nano Energy, 2021, 88: 106278.
[51] [51] HAO Y, HOU Y, FU J, et al. Flexible piezoelectric energy harvester with an ultrahigh transduction coefficient by the interconnected skeleton design strategy[J]. Nanoscale, 2020, 12(24): 13001-13009.
[52] [52] DAGDEVIREN C, YANG B D, SU Y, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proc Natl Acad Sci, 2014, 111(5): 1927-1932.
[53] [53] QI Y, KIM J, NGUYEN T D, et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons[J]. Nano Lett, 2011, 11(3): 1331-1336.
[54] [54] PARK K I, XU S, LIU Y, et al. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates[J]. Nano Lett, 2010, 10(12): 4939-4943.
[55] [55] CHEN J, OH S K, NABULSI N, et al. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator[J]. Nano Energy, 2019, 57: 670-679.
[56] [56] BAKAUL S R, SERRAO C R, LEE M, et al. Single crystal functional oxides on silicon[J]. Nat Commun, 2016, 7(1): 10547.
[57] [57] BAKAUL S R, SERRAO C R, LEE O, et al. High speed epitaxial perovskite memory on flexible substrates[J]. Adv Mater, 2017, 29(11): 1605699.
[58] [58] JUNG Y H, HONG S K, WANG H S, et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing[J]. Adv Mater, 2020, 32(35): 1904020.
[59] [59] PEDDIGARI M, PARK J H, HAN J H, et al. Flexible self-charging, ultrafast, high-power-density ceramic capacitor system[J]. ACS Energy Lett, 2021, 6(4): 1383-1391.
[60] [60] HWANG G T, ANNAPUREDDY V, HAN J H, et al. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester[J]. Adv Energy Mater, 2016, 6(13): 1600237.
[61] [61] YAN J, HAN Y, XIA S, et al. Polymer template synthesis of flexible BaTiO3 crystal nanofibers[J]. Adv Funct Mater, 2019, 29(51): 1907919.
[62] [62] ZHANG Y, JEONG C K, YANG T, et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting[J]. J Mater Chem A, 2018, 6(30): 14546-14552.
[63] [63] ZHANG Y, SUN H, JEONG C K. Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters[J]. ACS Appl Mater Interfaces, 2018, 10(41): 35539-35546.
[64] [64] HONG Y, WANG B, LONG Z, et al. Hierarchically interconnected piezoceramic textile with a balanced performance in piezoelectricity, flexibility, toughness, and air permeability[J]. Adv Funct Mater, 2021, 31(42): 2104737.
[65] [65] HONG Y, WANG B, LIN W, et al. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders[J]. Sci Adv, 2021, 7(11): eabf0795.
[66] [66] GAO W, YOU L, WANG Y, et al. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability[J]. Adv Electron Mater, 2017, 3(8): 1600542.
[67] [67] LEE H J, WON S S, CHO K H, et al. Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films[J]. Appl Phys Lett, 2018, 112(9): 092901.
[68] [68] WON S S, SEO H, KAWAHARA M, et al. Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films[J]. Nano Energy, 2019, 55: 182-192.
[69] [69] HE S, DONG W, GUO Y, et al. Piezoelectric thin film on glass fiber fabric with structural hierarchy: an approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators[J]. Nano Energy, 2019, 59: 745-753.
[70] [70] YU D, ZHENG Z, LIU J, et al. Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring[J]. Nano-Micro Lett, 2021, 13(1): 117.
[71] [71] JIANG J, BITLA Y, HUANG C W, et al. Flexible ferroelectric element based on van der waals heteroepitaxy[J]. Sci Adv, 2017, 3(6): e1700121.
[72] [72] ZHANG X, HE Y, LI R, et al. 2D mica crystal as electret in organic field-effect transistors for multistate memory[J]. Adv Mater, 2016, 28(19): 3755-3760.
[73] [73] YANG Y, YUAN G, YAN Z, et al. Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95Co0.05O3 film[J]. Adv Mater, 2017, 29(26): 1700425.69
[74] [74] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.
[75] [75] LI F, ZHANG S, XU Z, et al. Electromechanical properties of tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystals[J]. J Appl Phys, 2010, 107(5): 054107.
[77] [77] WANG W, LIU D, ZHANG Q, et al. Shear-mode piezoelectric properties of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. J Appl Phys, 2010, 107(8): 084101.
[78] [78] HWANG G T, KIM Y, LEE J H, et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester[J]. Energy Environ Sci, 2015, 8(9): 2677-2684.
[79] [79] HWANG G T, PARK H, LEE J H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester[J]. Adv Mater, 2014, 26(28): 4880-4887.
[80] [80] ZENG Z, GAI L, PETITPAS A, et al. A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application[J]. Sens Actuators Phys, 2017, 265: 62-69.
[81] [81] ZENG Z, GAI L, WANG X, et al. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite[J]. Appl Phys Lett, 2017, 110(10): 103501.
[82] [82] WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514(7523): 470-474.
[83] [83] ZOU D, LIU S, ZHANG C, et al. Flexible and translucent PZT films enhanced by the compositionally graded heterostructure for human body monitoring[J]. Nano Energy, 2021, 85: 105984.
[84] [84] KIM D H, SHIN H J, LEE H, et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters[J]. Adv Funct Mater, 2017, 27(25): 1700341.
[85] [85] YANG Y, JUNG J H, YUN B K, et al. Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires[J]. Adv Mater, 2012, 24(39): 5357-5362.
[86] [86] PARK D Y, JOE D J, KIM D H, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Adv Mater, 2017, 29(37): 1702308.
[87] [87] LEE D W, JEONG D G, KIM J H, et al. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot[J]. Nano Energy, 2020, 76: 105066.
[88] [88] TANG M, GUAN Q, WU X, et al. A high-efficiency multidirectional wind energy harvester based on impact effect for self-powered wireless sensors in the grid[J]. Smart Mater Struct, 2019, 28(11): 115022.
[89] [89] CHEN X, LUO L, ZENG Z, et al. Bio-inspired flexible vibration visualization sensor based on piezo-electrochromic effect[J]. J Materiomics, 2020, 6(4): 643-650.
[90] [90] WANG H S, HONG S K, HAN J H, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics[J]. Sci Adv, 2021, 7(7): eabe5683.
[91] [91] TSIKRITEAS Z M, ROSCOW J I, BOWEN C R, et al. Flexible ferroelectric wearable devices for medical applications[J]. iScience, 2021, 24(1): 101987.
[92] [92] LIU Y, ZHANG X, CAO C, et al. Built-in electric fields dramatically induce enhancement of osseointegration[J]. Adv Funct Mater, 2017, 27(47): 1703771.
[93] [93] QIAN Y, CHENG Y, SONG J, et al. Mechano-informed biomimetic polymer scaffolds by incorporating self-powered zinc oxide nanogenerators enhance motor recovery and neural function[J]. Small, 2020, 16(32): 2000796.
[94] [94] LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nat Commun, 2016, 7(1): 11108.
[95] [95] LEE H S, CHUNG J, HWANG G T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells[J]. Adv Funct Mater, 2014, 24(44): 6914-6921.
[96] [96] HAN J H, KWAK J H, JOE D J, et al. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band[J]. Nano Energy, 2018, 53: 198-205.
[97] [97] SONY S, LAVENTURE S, SADHU A. A literature review of next-generation smart sensing technology in structural health monitoring[J]. Struct Control Health Monit, 2019, 26(3): e2321.
[98] [98] PAN X, WANG Z, CAO Z, et al. A self-powered vibration sensor based on electrospun poly (vinylidene fluoride) nanofibres with enhanced piezoelectric response[J]. Smart Mater Struct, 2016, 25(10): 105010.
[99] [99] YANG Z, ZHOU S, ZU J, et al. High-performance piezoelectric energy harvesters and their applications[J]. Joule, 2018, 2(4): 642-697.
[100] [100] WANG Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics[J]. Adv Funct Mater, 2008, 18(22): 3553-3567.
[101] [101] LEE M, CHEN C Y, WANG S, et al. A hybrid piezoelectric structure for wearable nanogenerators[J]. Adv Mater, 2012, 24(13): 1759-1764.
[102] [102] HWANG G T, YANG J, YANG S H, et al. A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT[J]. Adv Energy Mater, 2015, 5(10): 1500051.
[103] [103] CHEN X, SHAO J, AN N, et al. Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs[J]. J Mater Chem C, 2015, 3(45): 11806-11814.
[104] [104] KARAN S K, BERA R, PARIA S, et al. An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/ AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency[J]. Adv Energy Mater, 2016, 6(20): 1601016.
[105] [105] YI Z, XIE F, TIAN Y, et al. A battery-and leadless heart-worn pacemaker strategy[J]. Adv Funct Mater, 2020, 30(25): 2000477.
[106] [106] GUIDO F, QUALTIERI A, ALGIERI L, et al. AlN-based flexible piezoelectric skin for energy harvesting from human motion[J]. Microelectron Eng, 2016, 159: 174-178.
[107] [107] WU X, PARMAR M, LEE D W. A seesaw-structured energy harvester with superwide bandwidth for TPMS application[J]. IEEEASME Trans Mechatron, 2014, 19(5): 1514-1522.
[108] [108] JUNG I, SHIN Y H, KIM S, et al. Flexible piezoelectric polymer-based energy harvesting system for roadway applications[J]. Appl Energy, 2017, 197: 222-229.
[109] [109] DUDEM B, KIM D H, BHARAT L K, et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting[J]. Appl Energy, 2018, 230: 865-874.
[110] [110] WANG Z, TAN L, PAN X, et al. Self-powered viscosity and pressure sensing in microfluidic systems based on the piezoelectric energy harvesting of flowing droplets[J]. ACS Appl Mater Interfaces, 2017, 9(34): 28586-28595.
[111] [111] SULTANA A, ALAM Md M, GHOSH S K, et al. Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator[J]. Energy, 2019, 166: 963-971.
[112] [112] DAGDEVIREN C, JAVID F, JOE P, et al. Flexible piezoelectric devices for gastrointestinal motility sensing[J]. Nat Biomed Eng, 2017, 1(10): 807-817.
[113] [113] LI T, FENG Z Q, QU M, et al. Core/shell piezoelectric nanofibers with spatial self-orientated β-Phase nanocrystals for real-time micropressure monitoring of cardiovascular walls[J]. ACS Nano, 2019, 13(9): 10062-10073.
[114] [114] NGUYEN T D, DESHMUKH N, NAGARAH J M, et al. Piezoelectric nanoribbons for monitoring cellular deformations[J]. Nat Nanotechnol, 2012, 7(9): 587-593.
[115] [115] BHANG S H, JANG W S, HAN J, et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing[J]. Adv Funct Mater, 2017, 27(1): 1603497.
[116] [116] ASHRAFI M, ALONSO RASGADO T, BAGUNEID M, et al. The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals[J]. Vet Dermatol, 2016, 27(4): 235-e57.
[117] [117] WANG A, LIU Z, HU M, et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing[J]. Nano Energy, 2018, 43: 63-71.
[118] [118] ZHANG X, ZHANG C, LIN Y, et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment[J]. ACS Nano, 2016, 10(8): 7279-7286.
[119] [119] LEE Y S, COLLINS G, LIVINGSTON ARINZEH T. Neurite extension of primary neurons on electrospun piezoelectric scaffolds[J]. Acta Biomater, 2011, 7(11): 3877-3886.
[120] [120] JIANG L, YANG Y, CHEN R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application[J]. Adv Funct Mater, 2019, 29(33): 1902522.
Get Citation
Copy Citation Text
LIU Yang, WANG Yaojin. Flexible Piezoelectric Materials and Device Application[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 625
Special Issue:
Received: Aug. 27, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: