Optics and Precision Engineering, Volume. 22, Issue 6, 1668(2014)

Classification of Hyperspectral remote sensing images using correlation neighbor LLE

LIU Jia-min... LUO Fu-lin, HUANG Hong and LIU Yi-zhe |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [1] [1] YANG J M,KUO B C,YU P T, et al.. A dynamic subspace method for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2840-2853.

    [4] [4] BACHMANN C M, AINSWORTH T L. Exploiting manifold geometry in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454.

    [5] [5] WEN J H, TIAN ZH, SHE H W, et al.. Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding [C].2010 International Conference on Image Analysis and Signal Processing (IASP). Zhejiang, 2010: 257-262.

    [6] [6] CHEN Y C, CRAWFORD M M, GHOSH J. Applying nonlinear manifold learning to hyperspectral data for land cover classification [C].IGARSS: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Washington, DC: IEEE Computer Society, 2005: 24-29.

    [7] [7] QIAN H E, CHEN G. A new nonlinear dimensionality reduction method with application to hyperspectral image analysis [C].IGARSS: Proceeding of the 2007 IEEE International Geoscience and Remote Sensing Symposium,Washington, DC: IEEE Computer Society, 2007: 270-273.

    [8] [8] TENENBAUM J B,SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.

    [9] [9] PAN Y, GE S S, MAMUN A Al. Weighted locally linear embedding for dimension reduction [J]. Pattern Recognition, 2009, 42: 798-811.

    [10] [10] CARVALHO JUNIOR O A, GUIMARAES R F, GILLESPIE A R, et al.. A new approach to change vector analysis using distance and similarity measures[J]. Remote Sensing, 2011, 3(11):2473-2493.

    [11] [11] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326.

    [12] [12] HOSSEINI A, Ghassemian H. Classification of hyperspectral and multispectral images by using fractal dimension of spectral response curve [C].20th Iranian Conference on Electrical Engineering (ICEE). Tehran, 2012:1452-1457.

    [13] [13] YE CH Q,LIU X L,ZHANG ZH Y Z, et al.. Multi-Spectral and panchromatic image fusion based on region correlation coefficient in nonsubsampled Contourlet transform domain [C].2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC), Shenzhen,2010: 517-521.

    [14] [14] YU R L, QIANG W, YU E L, et al.. Hyperspectral image classification using kernel method based on the correlation coefficients of neighbor bands [C].Second IITA International Conference on Geoscience and Remote Sensing (IITA-GRS), Qingdao, 2010, 2: 230-233.

    [15] [15] FALIE D, DAVID L. Correlation coefficient based on independent component analysis[C].9th International Conference on Communications (COMM), Bucharest, 2012: 59-62.

    [16] [16] XUEJUN Z, XU Q. Spectral characteristics research of the hyperspectral image based on the correlation matrix [C].Fourth International Symposium on Information Science and Engineering (ISISE), Shanghai, 2012: 372-374.

    [17] [17] HAM J, CHEN Y, CRAWFORD M M, et al.. Investigation of the random forest framework for classification of hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 492-501.

    [18] [18] WANG L ZH, HUANG H, FENG H L. Hyperspectral remote sensing image classification based on SSMFA and kNNS [J]. Acta Electronica Sinica, 2012, 40(4): 780-787.(in Chinese)

    CLP Journals

    [1] HE Fang, WANG Rong, YU Qiang, JIA Wei-min. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and Precision Engineering, 2017, 25(1): 263

    [2] HUANG Hong, YANG Ya-qiong, LUO Fu-lin, FENG Hai-liang. Classification of Hyperspectral Remote Sensing Images Based on Supervised Sparse Manifold Embedding[J]. Acta Photonica Sinica, 2015, 44(12): 1228001

    [3] ZHANG Cheng-ye, QIN Qi-ming, Chen Li, Wang Nan, Zhao Shan-shan. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Optics and Precision Engineering, 2015, 23(8): 2407

    [4] HONG Hong, YANG Ya-qiong, LUO Fu-lin. Classification of Hyperspectral Images Based on Semi-supervised Sparse Multi-manifold Embedding[J]. Acta Photonica Sinica, 2016, 45(3): 330001

    Tools

    Get Citation

    Copy Citation Text

    LIU Jia-min, LUO Fu-lin, HUANG Hong, LIU Yi-zhe. Classification of Hyperspectral remote sensing images using correlation neighbor LLE[J]. Optics and Precision Engineering, 2014, 22(6): 1668

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 12, 2013

    Accepted: --

    Published Online: Jun. 30, 2014

    The Author Email:

    DOI:10.3788/ope.20142206.1668

    Topics