Semiconductor Optoelectronics, Volume. 44, Issue 4, 575(2024)
Optimal Design of Heater with Magnetic Field Self-suppression Based on Genetic Algorithm
[1] [1] Dang H, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Appl. Phys. Lett., 2010, 97(15): 151110.
[2] [2] Ding Z, Han B, Tang J. Single-beam miniaturized atomic magnetometer with square-wave modulation for magnetoencephalography[J]. IEEE Trans. Instrum. Meas., 2020, 70: 1-6.
[3] [3] Nardelli N V, Perry A R, Krzyzewski S P, et al. A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography[J]. EPJ Quantum Technol., 2020, 7(1): 11.
[4] [4] Bennett J S, Vyhnalek B E, Greenall H, et al. Precision magnetometers for aerospace applications: A review[J]. Sensors, 2021, 21(16): 5568.
[5] [5] Carletta S, Teofilatto P, Farissi M S. A magnetometer-only attitude determination strategy for small satellites: Design of the algorithm and hardware-in-the-loop testing[J]. Aerospace, 2020, 7(1): 3.
[6] [6] Liu L, Lu Y, Zhuang X, et al. Noise analysis in pre-amplifier circuits associated to highly sensitive optically-pumped magnetometers for geomagnetic applications[J]. Appl. Sci.-Basel, 2020, 10(20): 7172.
[7] [7] Kim Y J, Chu P-H, Savukov I, et al. Experimental limit on an exotic parity-odd spin- and velocity-dependent interaction using an optically polarized vapor[J]. Nat. Commun., 2019, 10(1): 2245.
[8] [8] Li J, Quan W, Zhou B, et al. SERF atomic magnetometer-recent advances and applications: A review[J]. IEEE Sens. J., 2018, 18(20): 8198-8207.
[9] [9] Seltzer S J. Developments in Alkali-Metal Atomic Magnetometry[D]. Princeton: Princeton University, 2008.
[10] [10] Zhang S, Lu J, Ye M, et al. Optimal operating temperature of miniaturized optically pumped magnetometers[J]. IEEE Trans. Instrum. Meas., 2022, 71: 1-7.
[11] [11] Ledbetter M, Savukov I, Acosta V, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Phys. Rev. A, 2008, 77(3): 033408.
[12] [12] Taue S, Sugihara Y, Kobayashi T, et al. Development of a highly sensitive optically pumped atomic magnetometer for biomagnetic field measurements: A phantom study[J]. IEEE Trans. Magn., 2010, 46(9): 3635-3638.
[13] [13] Sheng D, Perry A R, Krzyzewski S P, et al. A microfabricated optically-pumped magnetic gradiometer[J]. Appl. Phys. Lett., 2017, 110(3): 031106.
[14] [14] Alem O, Mhaskar R, Jimnez-Martnez R, et al. Magnetic field imaging with microfabricated optically-pumped magnetometers[J]. Opt. Express, 2017, 25(7): 7849-7858.
[15] [15] Ma Y, Chen Y, Zhao L, et al. The micro-fabrication and performance analysis of non-magnetic heating chip for miniaturized SERF atomic magnetometer[J]. J. Magn. Magn. Mater., 2022, 557: 169495.
[16] [16] Li Z, Wakai R T, Walker T G. Parametric modulation of an atomic magnetometer[J]. Appl. Phys. Lett., 2006, 89(13): 134105.
[17] [17] Zhao T, Liu Y, Wei K, et al. Ultra-sensitive all-optical comagnetometer with laser heating[J]. J. Phys. D: Appl. Phys., 2022, 55(16): 165103.
[18] [18] Shah V K, Wakai R T. A compact, high performance atomic magnetometer for biomedical applications[J]. Phys. Med. Biol., 2013, 58(22): 8153.
[19] [19] Yin Y, Zhou B, Yin K, et al. Comprehensive influence of modulated and bias magnetic fields on an atomic magnetometer[J]. Meas. Sci. Technol., 2021, 32(5): 055004.
[20] [20] Lu J, Wang J, Yang K, et al. In-situ measurement of electrical-heating-induced magnetic field for an atomic magnetometer[J]. Sensors, 2020, 20(7): 1826.
[21] [21] Lu J, Lu C, Wang S, et al. Optimized electric heater configuration design with magnetic-field self-suppression using genetic algorithm[J]. Sens. Actuators A, 2022, 344: 113758.
[22] [22] Liang X, Zhou X, Fang J, et al. A quadra-layered multipole moment heating film with self-cancellation of magnetic field[J]. IEEE Trans. Magn., 2020, 56(12): 1-11.
[23] [23] Liang X, Liu Z, Die H, et al. MEMS non-magnetic electric heating chip for spin-exchange-relaxation-free (SERF) magnetometer[J]. IEEE Access, 2019, 7: 88461-88471.
[24] [24] Liu X, Zhu J, Wang S, et al. Structure optimization of non-magnetic electric heating film for spin exchange relaxation free magnetometer[J]. Sens. Int., 2023, 4: 100233.
[25] [25] Shao Q, Lei X, Jiang L, et al. Comprehensive structural parameter optimal design of electric heaters with magnetic field suppression for atomic sensors[J]. IEEE Trans. Instrum. Meas., 2023, 72: 1-10.
[26] [26] Jackson J D. Classical Electrodynamics[M]. Hoboken: Wiley, 1999.
[27] [27] Volkmar C, Baruth T, Simon J, et al. Arbitrarily shaped coils’ inductance simulation based on a 3-dimensional solution of the Biot-Savart law[C]// Proc. of the 36th Inter. Spring Seminar on Electronics Technology, 2013: 210-215.
[28] [28] Lambora A, Gupta K, Chopra K. Genetic algorithm-A literature review[C]// Proc. of the 2019 Inter. Conf. on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 2019: 380-384.
[29] [29] Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools Appl., 2021, 80: 8091-8126.
[30] [30] Fu Y, Wang Z, Xing L, et al. Suppression of nonuniform magnetic fields in magnetic shielding system for SERF co-magnetometer[J]. IEEE Trans. Instrum. Meas., 2022, 71: 1-8.
Get Citation
Copy Citation Text
LIU Yanyan, ZHU Jing, TAN Zhicheng, LIU Xiaofei, WANG Shuai, ZHU Lianqing. Optimal Design of Heater with Magnetic Field Self-suppression Based on Genetic Algorithm[J]. Semiconductor Optoelectronics, 2024, 44(4): 575
Category:
Received: Mar. 3, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: