Optics and Precision Engineering, Volume. 21, Issue 7, 1906(2013)
Feature retained image inpainting based on sparsity regularization
[1] [1] BUGEAU A, BERTALMIO M, CASELLES V, et al.. A comprehensive framework for image inpainting [J] . IEEE Transactions on Image Processing, 2010, 19(10): 2634-2645.
[4] [4] BERTALMIO M, VESE L, SAPIRO G, et al.. Simultaneous structure and texture inpainting [J] . IEEE Transactions on Image Processing, 2003, 12(8): 882-889.
[6] [6] DONG B, HUI J, LI J, et al.. Wavelet frame based blind image inpainting [J] . Applied and Computational Harmonic Analysis, 2012, 32(2): 268-279.
[8] [8] XU Z B, SUN J. Image inpainting by patch propagation using patch sparsity [J] . IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.
[9] [9] LI M, CHENG J, LI X W, et al.. Image inpainting based on non-local learned dictionary [J]. Journal of Electronics & Information Technology, 2011, 33(11): 2672-2678. (in Chinese)
[10] [10] EASLEY G, LABATE D, LIM W Q. Sparse directional image representations using the discrete shearlet transform [J]. Applied Computational Harmonic Analysis, 2008, 25(1):25-46.
[11] [11] AFONSO M B, FIGUEIREDO M. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems [J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695.
[12] [12] BECK A T. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[13] [13] BECKER S, BOBIN J, CANDES E. NESTA: A fast and accurate first-order method for sparse recovery [J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39.
Get Citation
Copy Citation Text
DENG Cheng-zhi, LIU Juan-juan, WANG Sheng-qian, ZHU Hua-sheng. Feature retained image inpainting based on sparsity regularization[J]. Optics and Precision Engineering, 2013, 21(7): 1906
Category:
Received: Jan. 4, 2013
Accepted: --
Published Online: Aug. 5, 2013
The Author Email: Cheng-zhi DENG (dengchengzhi@126.com)