Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2734(2022)

Research Progress on Graphene/Ultra-High Temperature Ceramic Composites

XING Yue1... SUN Chuan1, HE Pengfei1, HU Zhenfeng1, REN Su'e2 and LIANG Xiubing1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(64)

    [1] [1] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5): 1347-1364.

    [2] [2] CENTENO A, ROCHA V G, ALONSO B, et al. Graphene for tough and electroconductive alumina ceramics[J]. J Eur Ceram Soc, 2013, 33(15-16): 3201-3210.

    [3] [3] MIRANZO P, RAMREZ C, ROMN-MANSO B, et al. In situ processing of electrically conducting graphene/SiC nanocomposites[J]. J Europ Ceram Soc, 2013, 33(10): 1665-1674.

    [4] [4] YAZDANI B, XIA Y, AHMAD I, et al. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites[J]. J Eur Ceram Soc, 2015, 35(1): 179-186.

    [5] [5] MARKANDAN K, TAN M T T, CHIN J, et al. A novel synthesis route and mechanical properties of Si-O-C cured yttria stabilised zirconia (YSZ)-graphene composite[J]. Ceram Int, 2015, 41(3): 3518-3525.

    [6] [6] CHO J, BOCCACCINI A R, SHAFFER M S P. Ceramic matrix composites containing carbon nanotubes[J]. J Mater Sci, 2009, 44(8): 1934-1951.

    [10] [10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [11] [11] GMEZ-NAVARRO C, BURGHARD M, KERN K. Elastic properties of chemically derived single graphene sheets[J]. Nano Lett, 2008, 8(7): 2045-2049.

    [12] [12] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924.

    [14] [14] BALZSI C, FOGARASSY Z, TAPASZT O, et al. Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing[J]. J Eur Ceram Soc, 2017, 37(12): 3797-3804.

    [15] [15] GRIGORIEV S, PERETYAGIN P, SMIRNOV A, et al. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics[J]. J Eur Ceram Soc, 2017, 37(6): 2473-2479.

    [16] [16] LIU J, YAN H, JIANG K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J]. Ceram Int, 2013, 39(6): 6215-6221.

    [17] [17] PETRUS M, WOZNIAK J, CYGAN T, et al. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene[J]. Ceram Int, 2017, 43(6): 5007-5013.

    [18] [18] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5(4): 3182-3190.

    [19] [19] TKALYA E E, GHISLANDI M, DE WITH G, et al. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites[J]. Curr Opin Colloid In Sci, 2012, 17(4): 225-232.

    [20] [20] WANG K, WANG Y, FAN Z, et al. Preparation of graphene nanosheet/alumina composites by spark plasma sintering[J]. Mater Res Bull, 2011, 46(2): 315-318.

    [21] [21] GKIKAS G, BARKOULA N M, PAIPETIS A S. Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy[J]. Compos Part B Eng, 2012, 43(6): 2697-2705.

    [22] [22] APARNA R, SIVAKUMAR N, BALAKRISHNAN A, et al. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants[J]. J Renew Sustain Energy, 2013, 5(3): 033123.

    [23] [23] AN X, SIMMONS T, SHAH R, et al. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications[J]. Nano Lett, 2010, 10(11): 4295-4301.

    [25] [25] MARKANDAN K, CHIN J K, TAN M T T. Recent progress in graphene based ceramic composites: A review[J]. J Mater Res, 2017, 32(1): 84-106.

    [26] [26] CHEN F, YAN K, SUN J, et al. From the research state of the thermal properties of graphene reinforced ceramics to the future of computer simulation[J]. Ceram Int, 2020, 46(11): 18428-18445.

    [27] [27] HUANG Y, WAN C. Controllable fabrication and multifunctional applications of graphene/ceramic composites[J]. J Adv Ceram, 2020, 9: 271-291.

    [28] [28] LIU Y, JIANG X, SHI J, et al. Research on the interface properties and strengthening-toughening mechanism of nanocarbon-toughened ceramic matrix composites[J]. Nanotechnol Rev, 2020, 9(1): 190-208.

    [29] [29] RAMREZ C, BELMONTE M, MIRANZO P, et al. Applications of ceramic/graphene composites and hybrids[J]. Materials, 2021, 14(8): 2071.

    [30] [30] SIMONENKO E P, SIMONENKO N P, SEVASTYANOV V G, et al. ZrB2/HfB2-SiC ultra-high-temperature ceramic materials modified by carbon components: The review[J]. Russ J Inorg Chem, 2018, 63(14): 1772-1795.

    [31] [31] ANTOU G, GUYOT P, PRADEILLES N, et al. Identification of densification mechanisms of pressure-assisted sintering: Application to hot pressing and spark plasma sintering of alumina[J]. J Mater Sci, 2015, 50(5): 2327-2336.

    [32] [32] ZHOU M, ZHONG J, ZHAO J, et al. Microstructures and properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering[J]. Mater Res Bull, 2013, 48(5): 1927-1933.

    [33] [33] ACEVEDO L, USN S, UCHE J. Exergy transfer analysis of microwave heating systems[J]. Energy, 2014, 68: 349-363.

    [35] [35] PETRUS M, WOZNIAK J, CYGAN T, et al. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene[J]. Ceram Int, 2017, 43: 5007-5013.

    [36] [36] YADHUKULAKRISHNAN G B, KARUMURI S, RAHMAN A, et al. Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites[J]. Ceram Int, 2013, 39(6): 6637-6646.

    [37] [37] NIETO A, LAHIRI D, AGARWAL A. Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide[J]. Scripta Mater, 2013, 69(9): 678-681.

    [38] [38] NGUYEN V H, DELBARI S A, ASL M S, et al. Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics[J]. Ceram Int, 2021, 47(9): 12459-12466.

    [39] [39] AKARSU M K, AKIN I. Mechanical properties and oxidation behavior of spark plasma sintered (Zr, Ti) B2 ceramics with graphene nanoplatelets[J]. Ceram Int, 2020, 46(16): 26109-26120.

    [40] [40] NIETO A, LAHIRI D, AGARWAL A. Graphene nanoplatelets reinforced tantalum carbide consolidated by spark plasma sintering[J]. Mater Sci Eng A, 2013, 582: 338-346.

    [41] [41] ASL M S, KAKROUDI M G. Characterization of hot-pressed graphene reinforced ZrB2-SiC composite[J]. Mater Sci Eng A, 2015, 625: 385-392.

    [42] [42] KARTHISELVA N S, MURTY B S, BAKSHI S R. Graphene nanoplatelets induce crystallographic texturing during reactive spark plasma sintering of titanium diboride[J]. Carbon, 2018, 133: 323-334.

    [44] [44] ZHANG X, AN Y, HAN J, et al. Graphene nanosheet reinforced ZrB2-SiC ceramic composite by thermal reduction of graphene oxide[J]. RSC Adv, 2015, 5(58): 47060-47065.

    [45] [45] AN Y, XU X, GUI K. Effect of SiC whiskers and graphene nanosheets on the mechanical properties of ZrB2-SiCw-graphene ceramic composites[J]. Ceram Int, 2016, 42(12): 14066-14070.

    [46] [46] XIA C, ASL M S, NAMINI A S, et al. Enhanced fracture toughness of ZrB2-SiCw ceramics with graphene nano-platelets[J]. Ceram Int, 2020, 46(16): 24906-24915.

    [47] [47] LI S, WEI C, CHENG J, et al. Crack tolerant TaC-SiC ceramics prepared by spark plasma sintering[J]. Ceram Int, 2020, 46(16): 25230-25235.

    [48] [48] SUN J, ZHAO J, HUANG Z, et al. Hybrid multilayer graphene and SiC whisker reinforced TiB2 based nano-composites by two-step sintering[J]. J Alloy Compd, 2021, 856: 157283.

    [49] [49] ZHANG B, CHENG L, LU Y, et al. Scalable preparation of graphene reinforced zirconium diboride composites with strong dynamic response[J]. Carbon, 2018, 139: 1020-1026.

    [50] [50] ZHANG Y, SANVITO S. Interface engineering of graphene nanosheet reinforced ZrB2 composites by tuning surface contacts[J]. Phys Rev Mater, 2019, 3(7): 073604.

    [51] [51] ASL M S, NAYEBI B, MOTALLEBZADEH A, et al. Nanoindentation and nanostructural characterization of ZrB2-SiC composite doped with graphite nano-flakes[J]. Compos Part B Eng, 2019, 175: 107153.

    [52] [52] NGUYEN T P, PAZHOUHANFAR Y, DELBARI S A, et al. Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets[J]. Ceram Int, 2020, 46(11): 18742-18749.

    [54] [54] AKIN I, KAYA O. Microstructures and properties of silicon carbide-and graphene nanoplatelet-reinforced titanium diboride composites[J]. J Alloy Compd, 2017, 729: 949-959.

    [55] [55] OCAK B C, YAVAS B, AKIN I, et al. Spark plasma sintered ZrC-TiC-GNP composites: Solid solution formation and mechanical properties[J]. Ceram Int, 2018, 44(2): 2336-2344.

    [56] [56] AN Y, HAN J, ZHANG X, et al. Bioinspired high toughness graphene/ZrB2 hybrid composites with hierarchical architectures spanning several length scales[J]. Carbon, 2016, 107: 209-216.

    [57] [57] ZHANG B, ZHANG X, HONG C, et al. Electrostatic assembly preparation of high-toughness zirconium diboride-based ceramic composites with enhanced thermal shock resistance performance[J]. ACS Appl Mater Interfaces, 2016, 8(18): 11675-11681.

    [58] [58] CHENG Y, HU P, ZHOU S, et al. Using macroporous graphene networks to toughen ZrC-SiC ceramic[J]. J Eur Ceram Soc, 2018, 38(11): 3752-3758.

    [59] [59] CHENG Y, LYU Y, HAN W, et al. Multiscale toughening of ZrB2-SiC-graphene@ ZrB2-SiC dual composite ceramics[J]. J Am Ceram Soc, 2019, 102(4): 2041-2052.

    [60] [60] CHENG Y, LYU Y, ZHOU S, et al. Non-axially aligned ZrB2-SiC/ZrB2-SiC-graphene short fibrous monolithic ceramics with isotropic in-plane properties[J]. Ceram Int, 2019, 45(3): 4113-4118.

    [61] [61] CHENG Y, AN Y, LIU Y, et al. ZrB2-based “brick-and-mortar” composites achieving the synergy of superior damage tolerance and ablation resistance[J]. ACS Appl Mater Interfaces, 2020, 12(29): 33246-33255.

    [62] [62] BAI Y, ZHANG B, DU H, et al. Efficient multiscale strategy for toughening HfB2 ceramics: A heterogeneous ceramic-metal layered architecture[J]. J Am Ceram Soc, 2021, 104(4): 1841-1851.

    [63] [63] KUN P, TAPASZTO O, WEBER F, BALAZSI C. Determination and mechanical properties of multilayer graphene added silicon nitride-based composites[J]. Ceram Int, 2012, 38: 211-216.

    [65] [65] SIMONENKO E P, SIMONENKO N P, KOLESNIKOV A F, et al. Modification of HfB2-30% SiC UHTC with graphene (1 vol%) and its influence on the behavior in a supersonic air jet[J]. Russ J Inorg Chem, 2021, 66(9): 1405-1415.

    [66] [66] CHENG Y, LIU Y, AN Y, et al. High thermal-conductivity rGO/ZrB2-SiC ceramics consolidated from ZrB2-SiC particles decorated GO hybrid foam with enhanced thermal shock resistance[J]. J Eur Ceram Soc, 2020, 40(8): 2760-2767.

    [67] [67] VAJDI M, MOGHANLOU F S, NEKAHI S, et al. Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2-SiC ceramics[J]. Ceram Int, 2020, 46(13): 21775-21783.

    [68] [68] WANG A, LIAO H, ZHANG T, et al. Study on the effect of sample shapes on the thermal shock behavior of ZrB2-SiC-graphite sharp leading edge[J]. Int J Ceram Eng Sci, 2020, 2(2): 101-109.

    [69] [69] NIETO A, KUMAR A, LAHIRI D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow[J]. Carbon, 2014, 67: 398-408.

    [70] [70] AKARSU M K, AKIN I. Mechanical properties and oxidation behavior of spark plasma sintered (Zr, Ti)B2 ceramics with graphene nanoplatelets[J]. Ceram Int, 2020, 46(16): 26109-26120.

    [71] [71] CHENG Y, HU Y, HAN W, et al. Microstructure, mechanical behavior and oxidation resistance of disorderly assembled ZrB2-based short fibrous monolithic ceramics[J]. J Eur Ceram Soc, 2019, 39(9): 2794-2804.

    [72] [72] NGUYEN V H, DELBARI S A, ASL M S, et al. Combined role of SiC whiskers and graphene nano-platelets on the microstructure of spark plasma sintered ZrB2 ceramics[J]. Ceram Int, 2021, 47(9): 12459-12466.

    [73] [73] SIMONENKO E P, SIMONENKO N P, KOLESNIKOV A F, et al. Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow[J]. J Eur Ceram Soc, 2022, 42(1): 30-42

    Tools

    Get Citation

    Copy Citation Text

    XING Yue, SUN Chuan, HE Pengfei, HU Zhenfeng, REN Su'e, LIANG Xiubing. Research Progress on Graphene/Ultra-High Temperature Ceramic Composites[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2734

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 8, 2022

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220098

    Topics