Laser Journal, Volume. 45, Issue 10, 80(2024)
Multi-task driving perception method based on improved HybridNets
[1] [1] Duan K, Bai S, Xie L, et al. Centernet: Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 6569-6578.
[2] [2] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[3] [3] Albayrak A, zerdem M S. Gas Cylinder Detection Using Deep Learning Based YOLOv5 Object Detection Method[C]//2022 7th International Conference on Computer Science and Engineering (UBMK). IEEE, 2022: 434-437.
[4] [4] Huang H, Lin L, Tong R, et al. Unet 3+: A full-scale connected unet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 1055-1059.
[5] [5] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.
[6] [6] Zhou J, Hao M, Zhang D, et al. Fusion PSPnet image segmentation based method for multi-focus image fusion[J]. IEEE Photonics Journal, 2019, 11(6): 1-12.
[7] [7] Parashar A, Rhu M, Mukkara A, et al. SCNN: An accelerator for compressed-sparse convolutional neural networks[J]. ACM SIGARCH computer architecture news, 2017, 45(2): 27-40.
[8] [8] Hou Y, Ma Z, Liu C, et al. Learning lightweight lane detection cnns by self attention distillation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1013-1021.
[9] [9] Wu D, Liao M W, Zhang W T, et al. Yolop: You only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022: 1-13.
[10] [10] Yu F, Chen H, Wang X, et al. Bdd100k: A diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2636-2645.
[11] [11] Vu D, Ngo B, Phan H. Hybridnets: End-to-end perception network[J]. arXiv preprint arXiv: 2203.09035, 2022.
[12] [12] Tan M, Le Q. Efficientnetv2: Smaller models and faster training[C]//International conference on machine learning. PMLR, 2021: 10096-10106.
[13] [13] Koonce B, Koonce B. Efficient Net[J]. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, 2021: 109-123.
[14] [14] Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6848-6856.
[15] [15] Chen Y, Kalantidis Y, Li J, et al. A^ 2-nets: Double attention networks[J]. Advances in neural information processing systems, 2018, 31: 98-103.
[16] [16] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[17] [17] Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2): 1011-1016.
[18] [18] Wang J, Cao Z. Chinese text sentiment analysis using LSTM network based on L2 and Nadam[C]//2017 IEEE 17th International Conference on Communication Technology (ICCT). IEEE, 2017: 1891-1895.
Get Citation
Copy Citation Text
WU Pengyu, ZHANG Yuanhui, LIU Kang. Multi-task driving perception method based on improved HybridNets[J]. Laser Journal, 2024, 45(10): 80
Category:
Received: Feb. 23, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: Yuanhui ZHANG (zyh@cjlu.edu.cn)