Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 4(2023)
Photocatalytic Hydrogen Production Performance of Zn0.76Co0.24S/Twinned Mn0.5Cd0.5S Homojunction/Heterojunction System
[1] [1] KIM J H, HANSORA D, SHARMA P, et al. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge[J]. Chem Soc Rev, 2019, 48(7): 1908-1971.
[2] [2] GUO Q, ZHOU C Y, MA Z, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv Mater, 2019, 31(50): 1901997.
[3] [3] LEE K M, LAI C W, NGAI K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review[J]. Water Res, 2016, 88: 428-448.
[5] [5] CHANDRASEKARAN S, YAO L, DENG L B, et al. Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chem Soc Rev, 2019, 48(15): 4178-4280.
[7] [7] IKEUE K, SHIIBA S, MACHIDA M. Novel visible-light-driven photocatalyst based on Mn?Cd?S for efficient H2 evolution[J]. J Mater Chem, 2010, 22(3): 743-745.
[8] [8] LIU X L, LIANG X Z, WANG P, et al. Highly efficient and noble metal-free NiS modified MnxCd1?xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation[J]. Appl Catal B-Environ, 2017, 203: 282-288.
[9] [9] XIONG M H, QIN Y, CHAI B, et al. Unveiling the role of Mn-Cd-S solid solution and MnS in MnxCd1-xS photocatalysts and decorating with CoP nanoplates for enhanced photocatalytic H2 evolution[J]. Chem Eng J, 2022, 428: 131069.
[10] [10] WANG Y P, HAO X Q, ZHANG L J, et al. Rational design of all-solid-state 0D/2D Mn0.2Cd0.8S/CeO2 direct Z-scheme for photocatalytic hydrogen evolution[J]. Energy Fuel, 2020, 34(2): 2599-2611.
[11] [11] JIANG G P, ZHENG C Y, YAN T, et al. Cd0.8Mn0.2S/MoO3 composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution[J]. Dalton T, 2021, 50(15): 5360-5369.
[12] [12] PENG H, HUANG C Y, ZHENG X G, et al. Efficient solar-light photocatalytic H2 evolution of Mn0.5Cd0.5S coupling with S, N-codoped carbon[J]. J Ind Eng Chem, 2022, 106: 225-232.
[13] [13] ZHAI H S, LIU X L, WANG P, et al. Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X= Mo, Cu, Pd) cocatalysts[J]. Appl Surf Sci, 2018, 430: 515-522.
[14] [14] YANG X X, GUO Y, LOU Y B, et al. O-MoS2/Mn0.5Cd0.5S composites with enhanced activity for visible-light-driven photocatalytic hydrogen evolution[J]. Catal Sci Technol, 2020, 10(15): 5298-5305.
[15] [15] LIU M C, WANG L Z, LU G Q, et al. Twins in Cd1?xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water[J]. Energy Environ Sci, 2011, 4(4): 1372-1378.
[16] [16] LIU M C, JING D W, ZHOU Z H, et al. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation[J]. Nat Commun, 2013, 4, 2278.
[17] [17] DU H, LIANG K, YUAN C Z, et al. Bare Cd1-xZnxS ZB/WZ heterophase nanojunctions for visible light photocatalytic hydrogen production with high efficiency[J]. Acs Appl Mater Inter, 2016, 8(37): 24550-24558.
[18] [18] LI H, WANG Z Q, HE Y H, et al. Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance[J]. J Colloid Interf Sci, 2019, 535: 469-480.
[19] [19] FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Appl Catal B-Environ, 2019, 243: 556-565.
[20] [20] XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559.
[21] [21] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S‐scheme Photocatalyst[J]. Adv Mater, 2021, 34, 2107668.
[22] [22] XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat Commun, 2020, 11, 4613.
[23] [23] LI X B, KANG B B, DONG F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671.
[24] [24] ZHANG B, HU X Y, LIU E Z, et al. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity[J]. Chin J Catal, 2021, 42(9): 1519-1529.
[25] [25] YIN X J, SUN W W, LV L P, et al. Boosting lithium-ion storage performance by synergistically coupling Zn0.76Co0.24S with N-/S-doped carbon and carbon nanofiber[J]. Chem Eng J, 2018, 346: 376-387.
[26] [26] YANG Y, HUANG W, LI S, et al. Surfactant-dependent flower-and grass-like Zn0.76Co0.24S/Co3S4 for high-performance all-solid-state asymmetric supercapacitors[J]. J Mater Chem A, 2018, 6(45): 22830-22839.
[27] [27] LI L, LIU G N, QI S P, et al. Highly efficient colloidal MnxCd1?xS nanorod solid solution for photocatalytic hydrogen generation[J]. J Mater Chem A, 2018, 6(46): 23683-23689.
[28] [28] JIANG X W, GONG H S, LIU Q W, et al. In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light[J]. Appl Catal B-Environ, 2020, 268: 118439.
[31] [31] WANG H, CHEN Z, LIU Y, et al. Hierarchically porous-structured ZnxCo1?xS@ C-CNT nanocomposites with high-rate cycling performance for lithium-ion batteries[J]. J Mater Chem A, 2017, 5(44): 23221-23227.
[32] [32] WANG C X, ZHANG W, FAN J, et al. S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution[J]. Ceram Int, 2021, 47(21): 30194-30202.
[33] [33] ZHAO H, GUO L, XING C, et al. A homojunction-heterojunction- homojunction scaffold boosts photocatalytic H2 evolution over Cd0.5Zn0.5S/CoO hybrids[J]. J Mater Chem A, 2020, 8(4): 1955-1965.
[34] [34] XIE X, XUE W H, HU X Y, et al. Synthesis of a Cu2?xSe/g-C3N4 heterojunction photocatalyst for efficient photocatalytic H2 evolution[J]. Colloid Surface A, 2022, 635: 128103.
[35] [35] JIA J, SUN W J, ZHANG Q Q, et al. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation[J]. Appl Catal B-Environ, 2020, 261: 118249.
[37] [37] HE F, MENG A Y, CHENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chin J Catal, 2020, 41(1): 9-20.
[38] [38] DENG H Z, FEI X G, YANG Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity[J]. Chem Eng J, 2021, 409: 127377.
[39] [39] REN D D, ZHANG W N, DING Y N, et al. In situ fabrication of robust cocatalyst‐free CdS/g‐C3N4 2D-2D step‐scheme heterojunctions for highly active H2 evolution[J]. Solar Rrl, 2020, 4(8): 1900423.
[40] [40] WANG C X, MA X Y, FU Z Y, et al. Highly efficient photocatalytic H2 evolution over NiCo2S4/Mn0.5Cd0.5S: Bulk twinned homojunctions and interfacial heterojunctions[J]. J Colloid Interface Sci, 2021, 592: 66-76.
[41] [41] WANG Z, LI M X, LI J Y, et al. NiSx modified Mn0.5Cd0.5S twinned homojunctions for efficient photocatalytic hydrogen evolution[J]. J Environ Chem Eng, 2022, 10, 107375.
Get Citation
Copy Citation Text
LIU Enzhou, WANG Chenxuan, SUN Tao, HU Xiaoyun, FAN Jun. Photocatalytic Hydrogen Production Performance of Zn0.76Co0.24S/Twinned Mn0.5Cd0.5S Homojunction/Heterojunction System[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 4
Special Issue:
Received: Jul. 19, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: Enzhou LIU (liuenzhou@nwu.edu.cn)