Optics and Precision Engineering, Volume. 30, Issue 10, 1217(2022)
Single-image translation based on multi-scale dense feature fusion
[1] [1] 1吕晓琪, 吴凉, 谷宇, 等. 基于三维卷积神经网络的低剂量CT肺结节检测[J]. 光学 精密工程, 2018, 26(5): 1211-1218. doi: 10.3788/OPE.20182605.1211LVX Q, WUL, GUY, et al. Detection of low dose CT pulmonary nodules based on 3D convolution neural network[J]. Opt. Precision Eng., 2018, 26(5): 1211-1218.(in Chinese). doi: 10.3788/OPE.20182605.1211
[2] J KIM, J K LEE, K M LEE. Accurate image super-resolution using very deep convolutional networks, 1646-1654(2016).
[3] R ZHANG, P ISOLA, A A EFROS. Colorful image colorization, 649-666(2016).
[4] [4] 4杜振龙, 沈海洋, 宋国美, 等. 基于改进CycleGAN的图像风格迁移[J]. 光学 精密工程, 2019, 27(8): 1836-1844. doi: 10.3788/ope.20192708.1836DUZ L, SHENH Y, SONGG M, et al. Image style transfer based on improved CycleGAN[J]. Opt. Precision Eng., 2019, 27(8): 1836-1844.(in Chinese). doi: 10.3788/ope.20192708.1836
[5] T PARK, A A EFROS, R ZHANG et al. Contrastive learning for unpaired image-to-image translation, 319-345(2020).
[6] [6] 6李宇, 刘雪莹, 张洪群, 等. 基于卷积神经网络的光学遥感图像检索[J]. 光学 精密工程, 2018, 26(1): 200-207. doi: 10.3788/OPE.20182601.0200LIY, LIUX Y, ZHANGH Q, et al. Optical remote sensing image retrieval based on convolutional neural networks[J]. Opt. Precision Eng., 2018, 26(1): 200-207.(in Chinese). doi: 10.3788/OPE.20182601.0200
[7] I GOODFELLOW, A J POUGET, M MIRZA et al. Generative adversarial nets. Advances in neural information processing systems, 27(2014).
[8] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2242-2251(2017).
[9] T KIM, H KIM et al. Learning to discover cross-domain relations with generative adversarial networks, 1865(2017).
[10] Z L YI, H ZHANG, P TAN et al. DualGAN: unsupervised dual learning for image-to-image translation, 2868-2876(2017).
[11] T R SHAHAM, T DEKEL, T MICHAELI. SinGAN: learning a generative model from a single natural image, 4569-4579(2019).
[12] J X LIN, Y X PANG, Y C XIA et al. TuiGAN: learning versatile image-to-image translation with two unpaired images, 18-35(2020).
[13] G HUANG, Z LIU, DER MAATEN LVAN et al. Densely connected convolutional networks, 2261-2269(2017).
[15] T HINZ, M FISHER, O WANG et al. Improved techniques for training single-image GANs, 1299-1308(2021).
[16] C X ZHENG, T J CHAM, J F CAI. The spatially-correlative loss for various image translation tasks, 16402-16412(2021).
[17] H Y LEE, H Y TSENG, J B HUANG et al. Diverse image-to-image translation via disentangled representations, 35-51(2018).
[18] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[19] I GULRAJANI, F AHMED, M ARJOVSKY et al. Improved training of wasserstein gans. arXiv preprint arXiv:, 2017.
[20] A PUMAROLA, A AGUDO, A M MARTINEZ et al. GANimation: anatomically-aware facial animation from a single image. Computer Vision-ECCV:European Conference on Computer Vision: Proceedings European Conference on Computer Vision, 11214, 835-851(2018).
[21] M HEUSEL, H RAMSAUER, T UNTERTHINER et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Advances in neural information processing systems(2017).
[22] W K NEWEY. Adaptive estimation of regression models via moment restrictions. Journal of Econometrics, 38, 301-339(1988).
Get Citation
Copy Citation Text
Qihang LI, Long FENG, Qing YANG, Yu WANG, Guohua GENG. Single-image translation based on multi-scale dense feature fusion[J]. Optics and Precision Engineering, 2022, 30(10): 1217
Category: Information Sciences
Received: Dec. 22, 2021
Accepted: --
Published Online: Jun. 1, 2022
The Author Email: GENG Guohua (1925995331@qq.com)