Acta Optica Sinica, Volume. 43, Issue 19, 1914001(2023)

Low-Noise Frequency Stabilized Laser for Space-Based Gravitational Wave Detection

Ming Li1,2, Yafeng Huang2, Meifeng Ye2, Di Hu2, Su Fang2, Yating Wang2, Yinnan Chen2, Yanan Qu2, Yuwei Yang1,2, Jijun Feng1、***, Lingke Wang2、**, Liang Liu2, and Tang Li2、*
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Aerospace Laser Engineering Departments, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(26)

    [1] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [2] Danzmann K, Rüdiger A. LISA technology-concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).

    [3] Jennrich O. LISA technology and instrumentation[J]. Classical and Quantum Gravity, 26, 153001(2009).

    [5] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).

    [6] Luo Z R, Wang Y, Wu Y L et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 05A108(2021).

    [7] Luo Z R, Bai S, Bian X et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 43, 415-447(2013).

    [8] Xu X, Tan Y D, Mu H L et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 60, 0312006(2023).

    [9] Schuldt T, Döringshoff K, Oswald M et al. Absolute laser frequency stabilization for LISA[J]. International Journal of Modern Physics D, 28, 1845002(2019).

    [10] McNamara P W, Ward H, Hough J et al. Laser frequency stabilization for spaceborne gravitational wave detectors[J]. Classical and Quantum Gravity, 14, 1543-1547(1997).

    [11] Sheard B S, Heinzel G, Danzmann K et al. Intersatellite laser ranging instrument for the GRACE follow-on mission[J]. Journal of Geodesy, 86, 1083-1095(2012).

    [12] Thompson R, Folkner W M, de Vine G et al. A flight-like optical reference cavity for GRACE follow-on laser frequency stabilization[C](2011).

    [13] Abich K, Abramovici A, Amparan B et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 123, 031101(2019).

    [14] Luo Y X, Li H Y, Li Y Q et al. Prototype of a monolithic cavity-based ultrastable optical reference for space applications[J]. Applied Optics, 60, 2877-2885(2021).

    [15] Fritschel P, Weiss R. Frequency match of the Nd∶YAG laser at 1.064 μm with a line in CO2[J]. Applied Optics, 31, 1910-1912(1992).

    [16] Mak A A, Muravitsky S G, Orlov O A et al. New laser for interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard[J]. Proceedings of SPIE, 1121, 478-484(1989).

    [17] Döringshoff K, Schuldt T, Kovalchuk E V et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics B, 123, 183(2017).

    [18] Döringshoff K, Gutsch F B, Schkolnik V et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 11, 054068(2019).

    [19] McRae T G, Ngo S, Shaddock D A et al. Frequency stabilization for space-based missions using optical fiber interferometry[J]. Optics Letters, 38, 278-280(2013).

    [20] Kéfélian F, Jiang H F, Lemonde P et al. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line[J]. Optics Letters, 34, 914-916(2009).

    [21] Dong J, Hu Y Q, Huang J C et al. Subhertz linewidth laser by locking to a fiber delay line[J]. Applied Optics, 54, 1152-1156(2015).

    [22] Huang J C, Wang L K, Duan Y F et al. All-fiber-based laser with 200 mHz linewidth[J]. Chinese Optics Letters, 17, 071407(2019).

    [23] Huang Y F, Hu D, Ye M F et al. All-fiber-based ultrastable laser with long-term frequency stability of 1.1×10-14[J]. Chinese Optics Letters, 21, 031404(2023).

    [24] Jiang H F, Kéfélian F, Lemonde P et al. An agile laser with ultra-low frequency noise and high sweep linearity[J]. Optics Express, 18, 3284-3297(2010).

    [25] Huang J C, Wang L K, Duan Y F et al. Vibration-insensitive fiber spool for laser stabilization[J]. Chinese Optics Letters, 17, 081403(2019).

    [26] Duan L Z. Intrinsic thermal noise of optical fibres due to mechanical dissipation[J]. Electronics Letters, 46, 1515-1516(2010).

    Tools

    Get Citation

    Copy Citation Text

    Ming Li, Yafeng Huang, Meifeng Ye, Di Hu, Su Fang, Yating Wang, Yinnan Chen, Yanan Qu, Yuwei Yang, Jijun Feng, Lingke Wang, Liang Liu, Tang Li. Low-Noise Frequency Stabilized Laser for Space-Based Gravitational Wave Detection[J]. Acta Optica Sinica, 2023, 43(19): 1914001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Feb. 28, 2023

    Accepted: Apr. 20, 2023

    Published Online: Oct. 13, 2023

    The Author Email: Feng Jijun (fjijun@usst.edu.cn), Wang Lingke (lkwang@siom.ac.cn), Li Tang (litang@siom.ac.cn)

    DOI:10.3788/AOS230604

    Topics