Study On Optical Communications, Volume. 47, Issue 1, 42(2021)

Investigation of Fan In and Fan Out Technologies for Multi Core Fiber

QIU Ying1...2, TAO Jin1,2, LIU Zi-chen1,2, and HE Zhi-xue12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(44)

    [1] [1] Richardson D, Fini J, Nelson L. Space-division Multiplexing in Optical Fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

    [2] [2] Soma D, Wakayama Y, Beppu Y, et al. 10.16-Peta-bit/s Dense SDM/WDM Transmission over 6-Mode 19-Core Fiber Across the C+L Band[J]. Journal of Lightwave Technology, 2018, 36(6): 1362-1368.

    [3] [3] Sakaguchi J, Klaus W, Awaji Y, et al. 228-Spatial-Channel Bi-Directional Data Communication System Enabled by 39-Core 3-Mode Fiber[J]. Journal of Lightwave Technology, 2019, 37(8): 1756-1763.

    [4] [4] Rademacher G, Puttnam B J, Luis R S, et al.10.66 Peta-bit/s Transmission over a 38-Core-Three-Mode Fiber [C]//Optical Fiber Communication Conference.San Diego, CA, USA: IEEE, 2020:Th3H.1.

    [6] [6] Uemura H, Takenaga K, Ori T, et al. Fused Taper Type Fan-in/Fan-out Device for Multicore EDF [C]//2013 18th OptoElectronics and Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching(OECC/PS). Kyoto, Japan:IEEE, 2013: TuS1-4.

    [7] [7] Uemura H, Omichi K, Takenaga K, et al. Fused Taper Type Fan-in/Fan-out Device for 12 Core Multi-Core Fiber [C]//2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology. Melbourne, VIC,Australia: IEEE, 2014: 49-50.

    [8] [8] Kopp V I, Park J, Wlodawski M, et al. Pitch Reducing Optical Fiber Array and Multicore Fiber for Space-division Multiplexing[C]//Photonics Society Summer Topical Meeting Series. Waikoloa, HI: IEEE, 2013:TuC2.2.

    [9] [9] Alvarado-Zacarias J C, Antonio-Lopez J E, Habib M S, et al. Low-Loss 19 Core Fan-in/Fan-out Device using Reduced-Cladding Graded Index Fibers[C]//Optical Fiber Communication Conference. San Diego, CA, USA: IEEE, 2019:Th3D.2.

    [10] [10] Gan L, Zhou J, Shen L, et al. Ultra-Low Crosstalk Fused Taper Type Fan-in/Fan-out Devices for Multicore Fibers[C]//Optical Fiber Communication Conference.San Diego. CA, USA: IEEE, 2019:Th3D.3.

    [11] [11] Kang Y, Guo X, Gan L, et al. Broadband Low-Loss Fan-in/Fan-out Devices for Multicore Fibers[C]//2019 Asia Communications and Photonics Conference (ACP). Chengdu, China:IEEE, 2019:1-3.

    [12] [12] Zhu B, Taunay T F, Yan M F, et al. Seven-core Multicore Fiber Transmissions for Passive Optical Network[J]. Optics Express, 2010, 18(11):11117-11122.

    [13] [13] Watanabe K, Saito T, Imamura K, et al. Development of Fiber Bundle Type Fan-out for Multicore Fiber[C]//Opto-electronics & Communications Conference. Busan,Korea: IEEE, 2012:5C1-2.

    [14] [14] Takara H, Sano A, Kobayashi T, et al. 1.01-Pbit/s (12 SDM/222 WDM/456 Gbit/s) Crosstalk-managed Transmission with 91.4-bit/s/Hz Aggregate Spectral Efficiency[C]//European Conference and Exhibition on Optical Communication. Amsterdam, Netherlands: OSA, 2012: Th3C.1.

    [15] [15] Sano A, Takara H, Kobayashi H, et al. 409-Tbit/s + 409-Tbit/s Crosstalk Suppressed Bidirectional MCF Transmission over 450 km Using Propagation-direction Interleaving[J]. Optics Express,2013, 21(14):16777-16783.

    [16] [16] Abe Y, Shikama K, Yanagi S, et al. Low-loss Physical-contact-type Fan-out Device for 12-core Multicore Fiber[C]//39th European Conference and Exhibition on Optical Communication (ECOC 2013). London, UK: IEEE, 2013: 1-3.

    [17] [17] Abe Y, Shikama K, Yanagi S, et al. Physical-contact-type Fan-out Device for Multicore Fibre [J]. Electronics Letters, 2013, 49(11):711-712.

    [18] [18] Watanabe K, Saito T, Imamura K, et al. Development of Fiber Bundle Type Fan-out for Multicore Fiber[C]//Opto-electronics & Communications Conference. Busan,Korea: IEEE, 2012:475-476.

    [19] [19] Abe Y, Shikama K, Ono H, et al. Fan-in/Fan-out Device Employing V-groove Substrate for Multicore Fibre[J]. Electronics Letters, 2015, 51(17):1347-1348.

    [20] [20] Kawasaki K, Sugimori T, Watanabe K, et al. Four-fiber Fan-out for MCF with Square Lattice Structure[C]//Optical Fiber Communication Conference. Los Angeles, CA, USA: IEEE, 2017:W3H.4.

    [21] [21] Yoshida M, Hirooka T, Nakazawa M. Low-loss and Reflection-free Fused Type Fan-out Device for 7-core Fiber based on a Bundled Structure[J]. Optics Express, 2017, 25(16):18817-18826.

    [22] [22] Shikama K, Abe Y, Ono H, et al. Low-Loss and Low-Mode-Dependent-Loss Fan-In/Fan-Out Device for 6-Mode 19-Core Fiber[J]. Journal of Lightwave Technology, 2018, 36(2):302-308.

    [23] [23] Gao Y, Cui J, Jia J, et al. Weakly-coupled 7-core-2-LP-mode Transmission Using Commercial SFP+Transceivers Enabled by All-Fiber Spatial Multiplexer and Demultiplexer[J]. Optics Express, 2019, 27(11):16271-16280.

    [24] [24] Klaus W, Sakaguchi J, Puttnam B J, et al. Free-Space Coupling Optics for Multicore Fibers[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1902-1905.

    [25] [25] Sakaguchi J, Puttnam B J, Klaus W, et al. 19-core Fiber Transmission of 19×100×172-Gbit/s SDM-WDM-PDM-QPSK Signals at 305 Tbit/s[C]//Optical Fiber Communication Conference. Los Angeles, CA, USA:IEEE, 2012:1-3.

    [26] [26] Tottori Y, Kobayashi T, Watanabe M. Low Loss Optical Connection Module for Seven-Core Multicore Fiber and Seven Single-Mode Fibers[J]. IEEE Photonics Technology Letters, 2012, 24(21):1926-1928.

    [27] [27] Sakaguchi J, Puttnam B J, Klaus W, et al. 305 Tbit/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber[J]. Journal of Lightwave Technology, 2013, 31(4):554-562.

    [28] [28] Igarashi K, Soma D, Wakayama Y, et al. Ultra-dense Spatial-division-multiplexed Optical Fiber Yransmission over 6-mode 19-core Fibers[J]. Optics Express, 2016, 24(10):10213.

    [29] [29] Thomson R R, Bookey H T, Psaila N D, et al. Ultrafast-laser Inscription of a Three Dimensional Fan-out Device for Multicore Fiber Coupling Applications[J]. Optics Express, 2007, 15(18):11691-11697.

    [30] [30] Watanabe T, Hikita M, Kokubun Y. Laminated Polymer Waveguide Fan-out Device for Uncoupled Multi-core Fibers[J]. Optics Express, 2012, 20(24):26317-26325.

    [31] [31] Ding H Y, Ye F, Peucheret C, et al. On-chip Grating Coupler Array on the SOI Platform for Fan-in/fan-out of MCFs with Low Insertion Loss and Crosstalk[J]. Optics Express,2015, 23(3):3292-3298.

    [32] [32] Suganuma D,Ishigure T. Fan-in/out Polymer Optical Waveguide for a Multicore Fiber Fabricated Using the Mosquito Method[J]. Optics Express, 2015, 23(2):1585-1593.

    [33] [33] Dwivedi S, Pinna S, Moreira R, et al. Multicore Fiber Link with SiN Integrated Fan-out and InP Photodiode Array[J]. IEEE Photonics Technology Letters, 2018, 30(22):1921-1924.

    [34] [34] Shikama K, Abe Y, Kishi T, et al. Multicore-fiber Receptacle with Compact Fan-in/Fan-out Device for SDM Transceiver Applications[J]. Journal of Lightwave Technology, 2018, 36(24):5815-5822.

    [35] [35] Dwivedi S, Xie W, Rosborough V M, et al. Compact 7-channel SiN Wavelength De-multiplexer with Multi-Core Fiber Fan-out[C]//2018 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP). Portland, OR:IEEE, 2018:1-2.

    [36] [36] Matsui H, Yakabe S, Ishigure T. Applicability of the Mosquito Method to Fabricate Fan-in/out Device for Single-mode Multicore Fiber[C]//2019 IEEE CPMT Symposium Japan (ICSJ). Kyoto, Japan:IEEE, 2019:63-66.

    [37] [37] Pashkova T, O'Brien P. Development of Silicon Grating-to-Grating Coupling Technology and Demonstration of Fan-in/Fan-out for Multi-core Fiber applications[C]//2019 IEEE 21st Electronics Packaging Technology Conference (EPTC). Singapore: IEEE, 2019:582-585.

    [38] [38] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at Visible Wavelengths: Diffraction-limited Focusing and Subwavelength Resolution Imaging[J]. Science, 2016, 352(6290): 1190-1194.

    [40] [40] Li Z, Kim M H, Wang C, et al. Controlling Propagation and Coupling of Waveguide Modes Using Phase-gradient Metasurfaces[J]. Nature Nanotechnol, 2017, 12(7):675-683.

    [41] [41] Deng L G, Deng J, Guan Z, et al. Malus-metasurface-assisted Polarization Multiplexing[J]. Light: Science & Applications, 2020, 9(1):101.

    [42] [42] Lindenmann N, Balthasar G, Hillerkuss D, et al. Photonic Wire Bonding: a Novel Concept for Chip-scale Interconnects[J]. Optics Express, 2012, 20(16):17667-17677.

    [43] [43] Lindenmann N, Dottermusch S, Goedecke M L, et al. Connecting Silicon Photonic Circuits to Multicore Fibers by Photonic Wire Bonding[J]. Journal of Lightwave Technology, 2015, 33(4):755-760.

    [44] [44] Gu Z, Amemiya T, Ishikawa A, et al. Optical Transmission Between III-V Chips on Si Using Photonic Wire Bonding[J]. Optics Express, 2015, 23(17):22394.

    [45] [45] Schumann M, Bückmann T, Gruhler N, et al. Hybrid 2D–3D Optical Devices for Integrated Optics by Direct Laser Writing[J]. Light Science and Applications, 2014, 3(6):175.

    [46] [46] Pyo J, Kim J T, Lee J, et al. 3D Printed Nanophotonic Waveguides[J]. Advanced Optical Materials, 2016, 4(8):1190-1195.

    Tools

    Get Citation

    Copy Citation Text

    QIU Ying, TAO Jin, LIU Zi-chen, HE Zhi-xue. Investigation of Fan In and Fan Out Technologies for Multi Core Fiber[J]. Study On Optical Communications, 2021, 47(1): 42

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 27, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email:

    DOI:10.13756/j.gtxyj.2021.01.009

    Topics