Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1192(2024)

Effect of Nd3+ Doping on Dielectric Properties and Energy Storage Properties of PLZS Antiferroelectrics

JIAO Ande... ZHAO Ye, HAN Pei, SUN Ninging, LU Chunxiao, DU Jinhua, LI Yong*, ZHANG Qiwei and HAO Xihong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(26)

    [1] [1] DU Jinhua, LI Yong, SUN Ningning, et al. J Chin Ceram Soc, 2022, 50(3): 608-624.

    [2] [2] YANG Z T, DU H L, JIN L, et al. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges[J]. J Mater Chem A, 2021, 9(34): 18026-18085.

    [3] [3] CHAO W N, YANG T Q, LI Y X. Achieving high energy efficiency and energy density in PbHfO3-based antiferroelectric ceramics[J]. J Mater Chem C, 2020, 8(47): 17016-17024.

    [4] [4] WANG Zixuan, LI Zhuo, ZHANG Jiayong, et al. J Chin Ceram Soc, 2023, 51(6): 1530-1540.

    [5] [5] ZHOU Chuang, CAI Wei, CHEN Dakai, et al. Mater Rep, 2023, 37(6): 34-39.

    [6] [6] WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions[J]. Adv Funct Materials, 2019, 29(7): 1807321.

    [7] [7] XU R, ZHU Q S, XU Z, et al. PLZST antiferroelectric ceramics with promising energy storage and discharge performance for high power applications[J]. J Am Ceram Soc, 2020, 103: 1831-1838.

    [8] [8] ZHONG Michang, LU Biao, ZOU Yixuan, et al. J Chin Ceram Soc, 2019,47(6): 764-770.

    [9] [9] ZHANG Y J, LIU P, QIN Y F, et al. Ultrahigh energy storage density of Ca2+-modified PLZST antiferroelectric ceramics prepared by the tape-casting method[J]. J Eur Ceram Soc, 2021, 41(7): 4138-4145.

    [10] [10] ZHANG L, PU Y, CHEN M, et al. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability[J]. Chem Eng J, 2020, 383: 123154.

    [11] [11] WANG X Z, ZHU Q S, SUN H C, et al. Ultrahigh energy storage density and efficiency in PLZST antiferroelectric ceramics via multiple optimization strategy[J]. J Eur Ceram Soc, 2023, 43(9): 4051-4059.

    [12] [12] GE G L, HUANG K W, WU S H, et al. Synergistic optimization of antiferroelectric ceramics with superior energy storage properties via phase structure engineering[J]. Energy Storage Mater, 2021, 35: 114-121.

    [13] [13] LIU X H, ZHAO Y, SUN N N, et al. Ultra-high energy density induced by diversified enhancement effects in (Pb0.98-xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors[J]. Chem Eng J, 2021, 417: 128032.

    [14] [14] LIU X H, ZHU J Y, LI Y, et al. High-Performance PbZrO3-based antiferroelectric multilayer capacitors based on multiple enhancement strategy[J]. Chem Eng J, 2022, 446: 136729.

    [15] [15] LIU X H, LI Y, HAO X H. Ultra-high energy-storage density and fast discharge speed of (Pb0.98?xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method[J]. J Mater Chem A, 2019, 7(19): 11858-11866.

    [16] [16] DU Mingchao, CAI Wei, CHEN Dakai, et al. Electron Compon Mater, 2023, 42(7): 796-804.

    [17] [17] DOU Zhanming, Yang ying, JIANG Shenglin. Electron Compon Mater, 2023, 42(2): 165-172.

    [18] [18] XU Changsheng, LIANG Wei, LIAO Fuyang, et al. Inf Rec Mater, 2022, 23(4): 29-33.

    [19] [19] LI Z Q, FU Z Q, CAI H H, et al. Discovery of electric devil’s staircase in perovskite antiferroelectric[J]. Sci Adv, 2022, 8(14): eabl9088.

    [20] [20] ZHANG Tianfu, SI Yangyang, LI Yijie, et al. Acta Phys Sin, 2023, 72(9): 269-287.

    [21] [21] YE Fen, JIANG Xiangping, CHEN Yunjing, et al. J Inorg Mater, 2022, 37(5): 499-506.

    [22] [22] SUN H C, XU R, WANG X Z, et al. Energy storage properties of PLZST-based antiferroelectric ceramics with glass additives for low-temperature sintering[J]. Ceram Int, 2023, 49(2): 2591-2599.

    [23] [23] SUN H C, XU R, ZHU Q S, et al. Low temperature sintering of PLZST-based antiferroelectric ceramics with Al2O3 addition for energy storage applications[J]. J Eur Ceram Soc, 2022, 42(4): 1380-1387.

    [24] [24] LIU X H, LI Y, SUN N N, et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors[J]. Inorg Chem Front, 2020, 7(3): 756-764.

    [25] [25] XU R, WANG M J, ZHU Q S, et al. Achieving higher dynamic discharge energy and power density in PLZST antiferroelectrics with lower quasi-static recoverable energy density via tuning the phase transition properties[J]. Appl Phys Lett, 2022, 121(8): 082901.

    [26] [26] ZHAO M Y, WANG J, ZHANG J, et al. Ultrahigh energy storage performance realized in AgNbO3-based antiferroelectric materials via multiscale engineering[J]. J Adv Ceram, 2023, 12(6): 1166-1177.

    Tools

    Get Citation

    Copy Citation Text

    JIAO Ande, ZHAO Ye, HAN Pei, SUN Ninging, LU Chunxiao, DU Jinhua, LI Yong, ZHANG Qiwei, HAO Xihong. Effect of Nd3+ Doping on Dielectric Properties and Energy Storage Properties of PLZS Antiferroelectrics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1192

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 29, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: Yong LI (liyong3062545@126.com)

    DOI:10.14062/j.issn.0454-5648.20230756

    Topics