Chinese Journal of Lasers, Volume. 51, Issue 16, 1602304(2024)

Influence of Heat Treatment on Microstructure and Mechanical Properties of Laser Selective Melting Bimetal Structure Connection Interface

Siyuan Zhang1,2, Youzhao Zhang2, Xiangwei Li2、*, Tao Zhang1、**, Chao Yuan2, and Shuyan Zhang2
Author Affiliations
  • 1College of Physics and Materials Science, Guangzhou University, Guangzhou 511442, Guangdong, China
  • 2Centre of Excellence for Advanced Materials, Dongguan 523808, Guangdong, China
  • show less
    Figures & Tables(16)
    SEM morphology and particle size distribution of AM40 die steel powder. (a) Powder morphology; (b) particle size distribution
    Schematics of AM40/H13 bimetallic structure. (a) Die steel; (b) test rod
    Shape and size of AM40/H13 bimetal die steel tensile specimen
    Microstructure morphologies of AM40 samples. (a) Optical morphology of as-deposited AM40; (b) SEM morphology of as-deposited AM40; (c) optical morphology of heat treated AM40; (d) SEM morphology of heat treated AM40
    Microstructure morphologies of H13 samples. (a) Optical morphology of annealed H13; (b) SEM morphology of annealed H13; (c) optical morphology of heat treated H13; (d) SEM morphology of heat treated H13
    X-ray diffraction patterns of AM40 and H13. (a) AM40; (b) H13
    Microstructure morphologies of AM40/H13 bimetallic structure interface. (a)(b) As-deposited; (c)(d) heat treated
    Weld pool morphologies of AM40/H13 bimetal structural interface. (a)‒(c) As-deposited; (d)‒(f) heat treated
    Alloy element distributions of AM40/H13 bimetallic structural at interface before and after heat treatment. (a) Cr; (b) V; (c) Mo
    EBSD analysis of interface region of AM40/H13 bimetallic structure. (a) As-deposited, IPF; (b) as-deposited, LAM; (c) as-deposited, HAGB/LAGB; (d) heat treated, IPF; (e) heat treated, LAM; (f) heat treated, HAGB/LAGB
    Microhardness of AM40/H13 bimetallic structure at interface
    Tensile stress-strain curves
    Tensile longitudinal fracture morphologies. (a) As- deposited AM40/H13; (b) HT AM40/H13; (c) HT AM40; (d) HT H13
    Tensile transverse fracture morphologies. (a)(c) As-deposited AM40/H13; (b)(d) HT AM40/H13; (e) HT AM40; (f) HT H13
    • Table 1. Chemical compositions of AM40 and H13

      View table

      Table 1. Chemical compositions of AM40 and H13

      MaterialMass fraction /%
      CCuCrNiMoVSiFe
      AM400.200.500.500.504.000.20Bal.
      H130.405.251.351.001.00Bal.
    • Table 2. Mechanical properties of tensile specimens

      View table

      Table 2. Mechanical properties of tensile specimens

      SampleYield strength /MPaUltimate tensile strength /MPaElongation /%
      As- deposited AM40/H13352±2644±129.0±1.1
      HT AM40/H131319±211436±557.3±0.8
      HT AM401222±131329±338.0±1.3
      HT H131550±481807±2214.0±0.5
    Tools

    Get Citation

    Copy Citation Text

    Siyuan Zhang, Youzhao Zhang, Xiangwei Li, Tao Zhang, Chao Yuan, Shuyan Zhang. Influence of Heat Treatment on Microstructure and Mechanical Properties of Laser Selective Melting Bimetal Structure Connection Interface[J]. Chinese Journal of Lasers, 2024, 51(16): 1602304

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Jul. 17, 2023

    Accepted: Oct. 26, 2023

    Published Online: Apr. 17, 2024

    The Author Email: Li Xiangwei (xiangwei.li@ceamat.com), Zhang Tao (zhangtao@issp.ac.cn)

    DOI:10.3788/CJL231025

    Topics