Acta Optica Sinica, Volume. 42, Issue 3, 0327015(2022)

Two-Photon Scattering in Mixed Cavity Optomechanical System

Dongcheng Chen, Yuehui Zhou, Jinfeng Huang*, and Jieqiao Liao**
Author Affiliations
  • Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
  • show less
    References(63)

    [2] Chen T W, Law C K, Leung P T. Single-photon scattering and quantum-state transformations in cavity QED[J]. Physical Review A, 69, 063810(2004).

    [3] Shen J T, Fan S H. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system[J]. Physical Review Letters, 98, 153003(2007).

    [4] Zhou L, Gong Z R, Liu Y X et al. Controllable scattering of a single photon inside a one-dimensional resonator waveguide[J]. Physical Review Letters, 101, 100501(2008).

    [5] Fan S H, Kocabaş Ş E, Shen J T. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit[J]. Physical Review A, 82, 063821(2010).

    [6] Shi T, Sun C P. Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays[J]. Physical Review B, 79, 205111(2009).

    [7] Shi T, Fan S H, Sun C P. Two-photon transport in a waveguide coupled to a cavity in a two-level system[J]. Physical Review A, 84, 063803(2011).

    [8] Hurst D L, Kok P. Analytic few-photon scattering in waveguide QED[J]. Physical Review A, 97, 043850(2018).

    [9] Shen J T, Fan S H. Strongly correlated multiparticle transport in one dimension through a quantum impurity[J]. Physical Review A, 76, 062709(2007).

    [10] Tsoi T S, Law C K. Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide[J]. Physical Review A, 80, 033823(2009).

    [11] Witthaut D, Sørensen A S. Photon scattering by a three-level emitter in a one-dimensional waveguide[J]. New Journal of Physics, 12, 043052(2010).

    [12] Nysteen A, Kristensen P T. McCutcheon D P S, et al. Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations[J]. New Journal of Physics, 17, 023030(2015).

    [13] Das S, Elfving V E, Reiter F et al. Photon scattering from a system of multilevel quantum emitters. I. Formalism[J]. Physical Review A, 97, 043837(2018).

    [14] Das S, Elfving V E, Reiter F et al. Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide[J]. Physical Review A, 97, 043838(2018).

    [15] Rephaeli E, Kocabaş Ş E, Fan S H. Few-photon transport in a waveguide coupled to a pair of colocated two-level atoms[J]. Physical Review A, 84, 063832(2011).

    [16] Cheng M T, Xu J P, Agarwal G S. Waveguide transport mediated by strong coupling with atoms[J]. Physical Review A, 95, 053807(2017).

    [17] Liao J Q, Law C K. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity[J]. Physical Review A, 82, 053836(2010).

    [18] Xu S S, Rephaeli E, Fan S H. Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle[J]. Physical Review Letters, 111, 223602(2013).

    [19] Xu X W, Li Y. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a weakly nonlinear cavity[J]. Physical Review A, 90, 033832(2014).

    [20] Liao J Q, Cheung H K, Law C K. Spectrum of single-photon emission and scattering in cavity optomechanics[J]. Physical Review A, 85, 025803(2012).

    [21] Liao J Q, Law C K. Correlated two-photon scattering in cavity optomechanics[J]. Physical Review A, 87, 043809(2013).

    [22] Jia W Z, Wang Z D. Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system[J]. Physical Review A, 88, 063821(2013).

    [23] Liao J Q, Nori F. Single-photon quadratic optomechanics[J]. Scientific Reports, 4, 6302(2015).

    [24] Ng K H, Law C K. Single-photon scattering in an optomechanical Jaynes-Cummings model[J]. Physical Review A, 93, 043834(2016).

    [25] Qiao L. Single-photon transport through a waveguide coupling to a quadratic optomechanical system[J]. Physical Review A, 96, 013860(2017).

    [26] Kojima K, Hofmann H F, Takeuchi S et al. Nonlinear interaction of two photons with a one-dimensional atom: spatiotemporal quantum coherence in the emitted field[J]. Physical Review A, 68, 013803(2003).

    [27] Richter M, Carmele A, Sitek A et al. Few-photon model of the optical emission of semiconductor quantum dots[J]. Physical Review Letters, 103, 087407(2009).

    [28] Roy D. Few-photon optical diode[J]. Physical Review B, 81, 155117(2010).

    [29] Roy D. Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency[J]. Physical Review Letters, 106, 053601(2011).

    [30] Zheng H X, Gauthier D J, Baranger H U. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide[J]. Physical Review A, 85, 043832(2012).

    [31] Ke Y G, Poshakinskiy A V, Lee C H et al. Inelastic scattering of photon pairs in qubit arrays with subradiant states[J]. Physical Review Letters, 123, 253601(2019).

    [32] Glauber R J. Photon correlations[J]. Physical Review Letters, 10, 84-86(1963).

    [33] Aspect A, Grangier P, Roger G. Experimental tests of realistic local theories via Bell’s theorem[J]. Physical Review Letters, 47, 460-463(1981).

    [34] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information(2000).

    [35] Kippenberg T J, Vahala K J. Cavity optomechanics: back-action at the mesoscale[J]. Science, 321, 1172-1176(2008).

    [36] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).

    [37] Bowen W P, Milburn G J[M]. Quantum optomechanics(2016).

    [38] Law C K. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation[J]. Physical Review A, 51, 2537-2541(1995).

    [39] Thompson J D, Zwickl B M, Jayich A M et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane[J]. Nature, 452, 72-75(2008).

    [40] Sankey J C, Yang C, Zwickl B M et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system[J]. Nature Physics, 6, 707-712(2010).

    [41] Bhattacharya M, Meystre P. Multiple membrane cavity optomechanics[J]. Physical Review A, 78, 041801(2008).

    [42] Shi H, Bhattacharya M. Quantum mechanical study of a generic quadratically coupled optomechanical system[J]. Physical Review A, 87, 043829(2013).

    [43] Rabl P. Photon blockade effect in optomechanical systems[J]. Physical Review Letters, 107, 063601(2011).

    [44] Liao J Q, Nori F. Photon blockade in quadratically coupled optomechanical systems[J]. Physical Review A, 88, 023853(2013).

    [45] Xu X W, Li Y J, Liu Y X. Photon-induced tunneling in optomechanical systems[J]. Physical Review A, 87, 025803(2013).

    [46] Safavi-Naeini A H, Gröblacher S, Hill J T et al. Squeezed light from a silicon micromechanical resonator[J]. Nature, 500, 185-189(2013).

    [47] Purdy T P, Yu P L, Peterson R W et al. Strong optomechanical squeezing of light[J]. Physical Review X, 3, 031012(2013).

    [48] Aggarwal N, Cullen T J, Cripe J et al. Room-temperature optomechanical squeezing[J]. Nature Physics, 16, 784-788(2020).

    [49] Agarwal G S, Huang S M. Electromagnetically induced transparency in mechanical effects of light[J]. Physical Review A, 81, 041803(2010).

    [50] Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency[J]. Science, 330, 1520-1523(2010).

    [51] Safavi-Naeini A H, Alegre T P M, Chan J et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 472, 69-73(2011).

    [52] Wang J, Tian X D. Ideal optomechanically induced transparency and amplification based on nonrotating wave approximation effect[J]. Laser & Optoelectronics Progress, 58, 0512002(2021).

    [53] Rocheleau T, Ndukum T, Macklin C et al. Preparation and detection of a mechanical resonator near the ground state of motion[J]. Nature, 463, 72-75(2010).

    [54] Xuereb A, Paternostro M. Selectable linear or quadratic coupling in an optomechanical system[J]. Physical Review A, 87, 023830(2013).

    [55] Zhang L, Kong H Y. Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings[J]. Physical Review A, 89, 023847(2014).

    [56] Hauer B D, Metelmann A, Davis J P. Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities[J]. Physical Review A, 98, 043804(2018).

    [57] Zhang X Y, Zhou Y H, Guo Y Q et al. Optomechanically induced transparency in optomechanics with both linear and quadratic coupling[J]. Physical Review A, 98, 053802(2018).

    [58] Brunelli M, Houhou O, Moore D W et al. Unconditional preparation of nonclassical states via linear-and-quadratic optomechanics[J]. Physical Review A, 98, 063801(2018).

    [59] Zhou Y H, Zou F, Fang X M et al. Spectral characterization of couplings in a mixed optomechanical model[J]. Communications in Theoretical Physics, 71, 939-946(2019).

    [60] Sainadh U S, Kumar M A. Force sensing beyond standard quantum limit with optomechanical “soft” mode induced by nonlinear interaction[J]. Optics Letters, 45, 619-622(2020).

    [61] Zhang T C, Wu W, Yang P F et al. High-finesse micro-optical Fabry-Perot cavity and its applications in strongly coupled cavity quantum electrodynamics[J]. Acta Optica Sinica, 41, 0127001(2021).

    [62] Gan X T, Zhao J L. Resonance lineshapes in optical cavity[J]. Acta Optica Sinica, 41, 0823007(2021).

    [63] Král P. Displaced and squeezed Fock states[J]. Journal of Modern Optics, 37, 889-917(1990).

    Tools

    Get Citation

    Copy Citation Text

    Dongcheng Chen, Yuehui Zhou, Jinfeng Huang, Jieqiao Liao. Two-Photon Scattering in Mixed Cavity Optomechanical System[J]. Acta Optica Sinica, 2022, 42(3): 0327015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Sep. 8, 2021

    Accepted: Jan. 4, 2022

    Published Online: Jan. 26, 2022

    The Author Email: Huang Jinfeng (jfhuang@hunnu.edu.cn), Liao Jieqiao (jqliao@hunnu.edu.cn)

    DOI:10.3788/AOS202242.0327015

    Topics