Matter and Radiation at Extremes, Volume. 7, Issue 6, 065902(2022)

3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I

A. Tentori*... A. Colaïtis and D. Batani |Show fewer author(s)
Author Affiliations
  • Centre Lasers Intenses et Applications, CELIA, UMR 5107, Université Bordeaux CEA-CNRS, F-33405 Talence, France
  • show less
    References(75)

    [1] J.Nuckolls, A.Thiessen, L.Wood, G.Zimmerman. Laser compression of matter to super high densities: Thermonuclear (CTR) applications. Nature, 239, 139-142(1972).

    [2] N. G.Basov, H. D.Hora, O. N.Krokhin, H. J.Schwarz, G. V.Sklizkov. Heating of laser plasmas for thermonuclear fusion. Laser Interaction and Related Plasma Phenomena, 2, 389.22(1972).

    [3] V. A.Shcherbakov. Ignition of a laser fusion target by a focusing shock wave. Sov. J. Plasma Phys., 9, 240(1983).

    [4] K. S.Anderson, R.Betti, L. J.Perkins, A. A.Solodov, W.Theobald, C. D.Zhou. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [5] S.Atzeni, R.Betti, B.Canaud, L. J.Perkins, X.Ribeyre, A. J.Schmitt, G.Schurtz. Shock ignition of thermonuclear fuel: Principles and modelling. Nucl. Fusion, 54, 054008(2014).

    [6] R.Betti, V. N.Goncharov, J. P.Knauer, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, P. B.Radha, T. C.Sangster, S.Skupsky. Improved performance of direct drive inertial confinement fusion target designs with adiabat shaping using an intensity picket. Phys. Plasmas, 10, 1906-1918(2003).

    [7] W. L.Kruer. The Physics of Laser Plasma Interactions(2003).

    [8] B. B.Afeyan, E. A.Williams. Stimulated Raman sidescattering with the effects of oblique incidence. Phys. Fluids, 28, 3397-3408(1985).

    [9] C. S.Liu, M. N.Rosenbluth. Parametric decay of electromagnetic waves into two plasmons and its consequences. Phys. Fluids, 19, 967-971(1976).

    [10] A.Cola?tis, G.Duchateau, E.Le Bel, P.Nicola?, X.Ribeyre, V.Tikhonchuk. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions. Phys. Plasmas, 23, 072703(2016).

    [11] S. Y.Guskov, P. A.Kuchugov, R. A.Yakhin, N. V.Zmitrenko. Effect of fast electrons on the gain of a direct-drive laser fusion target. Plasma Phys. Controlled Fusion, 61, 105014(2019).

    [12] S.Guskov, P.Kuchugov, R.Yakhin, N.Zmitrenko. The role of fast electron energy transfer in the problem of shock ignition of laser thermonuclear target. High Energy Density Phys., 36, 100835(2020).

    [13] R.Betti, J. A.Delettrez, D. H.Edgell, J. A.Frenje, V. Y.Glebov, V. N.Goncharov, C. K.Li, R. L.McCrory, D. D.Meyerhofer, R. D.Petrasso, P. B.Radha, S. P.Regan, T. C.Sangster, F. H.Séguin, W.Seka, D.Shvarts, S.Skupsky, V. A.Smalyuk, C.Stoeckl, B.Yaakobi. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. Phys. Rev. Lett., 100, 185005(2008).

    [14] K. S.Anderson, D.Batani, R.Betti, A.Casner, J. A.Delettrez, J. A.Frenje, V. Y.Glebov, X.Ribeyre, A. A.Solodov, C.Stoeckl, M.Stoeckl, W.Theobald, J.Trela. The control of hot-electron preheat in shock-ignition implosions. Phys. Plasmas, 25, 052707(2018).

    [15] P.Andreo, A.Brahme. Restricted energy-loss straggling and multiple scattering of electrons in mixed Monte Carlo procedures. Radiat. Res., 100, 16-29(1984).

    [16] K.Heinrich, E. R.Krefting, L.Reimer, D. N. H.Yakowitz. The effect of scattering models on the results of Monte Carlo calculations. Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, 45-60(1976).

    [17] J.Baró, J. M.Fernández-Varea, R.Mayol, F.Salvat. On the theory and simulation of multiple elastic scattering of electrons. Nucl. Instrum. Methods Phys. Res., Sect. B, 73, 447-473(1993).

    [18] S.Agostinelli, J.Allison, K.Amako, J.Apostolakis, H.Araujo, P.Arce, M.Asai, D.Axen, S.Banerjeeet?al.. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [19] R.Chawla, X.Llovet, C.Negreanu, F.Salvat. Calculation of multiple-scattering angular distributions of electrons and positrons. Radiat. Phys. Chem., 74, 264-281(2005).

    [20] F.Salvat. PENELOPE: A Code System for Monte Carlo Simulation of Electron and Photon Transport(2019).

    [21] L.Antonelli, D.Batani, O.Renner, M.?míd. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy. Plasma Phys. Controlled Fusion, 58, 075007(2016).

    [22] L.Antonelli, F.Barbato, D.Batani, G.Boutoux, A.Colaitis, J.Feugeas, G.Folpini, D.Mancelli, J.Santos, V.Tikhonchuket?al.. Progress in understanding the role of hot electrons for the shock ignition approach to inertial confinement fusion. Nucl. Fusion, 59, 032012(2018).

    [23] L.Antonelli, S.Atzeni, F.Barbato, D.Batani, G.Boutoux, D.Mancelli, P.Nicola?, A.Tentori, V.Tikhonchuk, J.Trela. Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2. Phys. Plasmas, 26, 112708(2019).

    [24] K.Anderson, A.Casner, A.Colaitis, E.Le Bel, D.Raffestin, A.Ruocco, A.Tentori, W.Theobald, J.Trela, M.Weiet?al.. Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion. Phys. Plasmas, 28, 103302(2021).

    [25] D.Batani, A.Cola?tis, A.Tentori. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion: Part II. Matter Radiat. Extremes, 7, 065903(2022).

    [26] M. J.Berger. Monte Carlo calculation of the penetration and diffusion of fast charged particles. Methods in Computational Physics, Volume 1, 135-215(1963).

    [27] C.Moller. Zur theorie des durchgangs schneller elektronen durch materie. Ann. Phys., 406, 531-585(1932).

    [28] V. B.Berestetskii, L. D.Landau, E. M.Lifshitz, L. P.Pitaevskii. Relativistic Quantum Theory(1971).

    [29] S.Atzeni, J. R.Davies, A.Schiavi. Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition. Plasma Phys. Controlled Fusion, 51, 015016(2008).

    [30] G.Wentzel. Zwei bemerkungen über die zerstreuung korpuskularer strahlen als beugungserscheinung. Z. Phys., 40, 590-593(1926).

    [31]

    [32] M.Rotenberg, J. C.Stewart. Wave functions and transition probabilities in scaled Thomas-Fermi ion potentials. Phys. Rev., 140, A1508-A1519(1965).

    [33] A. S.Davydov. Quantum Mechanics(1965).

    [34] L. Y. A.Gremillet. Etude theorique et experimentale du transport des electrons rapides dans l’interaction laser-solide à tres haut flux(2001).

    [35] B.Martinez. Effets radiatifs et quantiques dans l’interaction laser-matiere ultra-relativiste(2018).

    [36] X.Vaisseau. Experimental study of fast electron transport in dense plasmas(2014).

    [37] E.Nardi, Z.Zinamon. Energy deposition by relativistic electrons in high-temperature targets. Phys. Rev. A, 18, 1246-1249(1978).

    [38] S. G.Brush, H. L.Sahlin, E.Teller. Monte Carlo study of a one-component plasma. I. J. Chem. Phys., 45, 2102-2118(1966).

    [39] Y. T.Lee, R. M.More. An electron conductivity model for dense plasmas. Phys. Fluids, 27, 1273-1286(1984).

    [40] R. M.More. Processes in non ideal plasmas, 135-215(1986).

    [41] D.Salzmann. Atomic Physics in Hot Plasmas(1998).

    [42] R. P.Drake. High-Energy-Density Physics(2018).

    [43] J. D.Jackson. Classical Electrodynamics(1975).

    [44] E. M.Campbell, R.Epstein, M.Hohenberger, P.Michel, J. F.Myatt, S. P.Regan, M. J.Rosenberg, W.Seka, R. W.Short, A. A.Solodovet?al.. Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments. Phys. Rev. Lett., 120, 055001(2018).

    [45] R.Epstein, M.Hohenberger, P.Michel, J. F.Myatt, S. P.Regan, M. J.Rosenberg, W.Seka, R. W.Short, A. A.Solodov, C.Stoecklet?al.. Hot-electron generation at direct-drive ignition-relevant plasma conditions at the National Ignition Facility. Phys. Plasmas, 27, 052706(2020).

    [46] D.Batani, S. D.Baton, E. L.Bel, G.Boutoux, S.Brygoo, A.Casner, A.Cola?tis, L.Jacquet, M.Koenig, C.Rousseauxet?al.. Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition. High Energy Density Phys., 36, 100796(2020).

    [47] F.Baffigi, D.Batani, S.Baton, A.Casner, A.Cola?tis, G.Cristoforetti, L. A.Gizzi, M.Koenig, P.Koester, L.Labateet?al.. Bremsstrahlung cannon design for shock ignition relevant regime. Rev. Sci. Instrum., 92, 013501(2021).

    [48] R. H.Dalitz, R. E.Peierls. On higher born approximations in potential scattering. Proc. R. Soc. London, Ser. A, 206, 509-520(1951).

    [49] B. P.Nigam, M. K.Sundaresan, T.-Y.Wu. Theory of multiple scattering: Second born approximation and corrections to Molière’s work. Phys. Rev., 115, 491-502(1959).

    [50] H. W.Koch, J. W.Motz, H.Olsen. Electron scattering without atomic or nuclear excitation. Rev. Mod. Phys., 36, 881-928(1964).

    [51] S.Goudsmit, J. L.Saunderson. Multiple scattering of electrons. Phys. Rev., 57, 24-29(1940).

    [52] S.Goudsmit, J. L.Saunderson. Multiple scattering of electrons. II. Phys. Rev., 58, 36-42(1940).

    [53] H. W.Lewis. Multiple scattering in an infinite medium. Phys. Rev., 78, 526-529(1950).

    [54] R.Betti, A. A.Solodov. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets. Phys. Plasmas, 15, 042707(2008).

    [55] Y. A.Valchuk, N. B.Volkov. Energy losses of fast electrons in a beam plasma. Fiz. Plazmy, 21, 167-172(1995).

    [56] C.Deutsch, H.Furukawa, K.Mima, M.Murakami, K.Nishihara. Interaction physics of the fast ignitor concept. Phys. Rev., 77, 2483(1996).

    [57] H.Habara, T.Iwawaki, A.Okabayashi, K. A.Tanaka, T.Yabuuchi. Stopping and transport of fast electrons in superdense matter. Phys. Plasmas, 20, 083301(2013).

    [58] L. D.Landau, E. M.Lifshitz, L. P.Pitaevskii. Physical Kinetics(1981).

    [59] J. R.Davies, L.Gremillet, J. J.Honrubia, T.Johzaki, R. J.Kingham, A. P. L.Robinson, M.Sherlock, A. A.Solodov, D. J.Strozzi. Theory of fast electron transport for fast ignition. Nucl. Fusion, 54, 054003(2014).

    [60] E. J.McGuire. Born-approximation electron ionization cross sections for Aln+ (0 ≤ n ≤ 11) and some ions of the Na isoelectronic sequence. Phys. Rev. A, 26, 125-131(1982).

    [61] J. A.Harte, Y. T.Lee. Suprathermal electron energy loss in partially ionized matter, 175-177(1983).

    [62] H. H.Anderson, M. J.Berger, H.Bichsel, J. A.Dennis, M.Inokuti, D.Powers, S. M.Seltzer, J. E.Turner(2016).

    [64] H. A.Bethe, M. S.Livingston. Nuclear physics C. Nuclear dynamics, experimental. Rev. Mod. Phys., 9, 245-390(1937).

    [65] D.Bohm, D.Pines. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev., 85, 338-353(1952).

    [66] G. F.Knoll. Radiation Detection and Measurement(1989).

    [67] J.Baró, J. M.Fernández-Varea, F.Salvat, J.Sempau. Simplified Monte Carlo simulation of elastic electron scattering in limited media. Nucl. Instrum. Methods Phys. Res., Sect. B, 84, 465-483(1994).

    [68] M.Asai, M. A.Cortés-Giraldo, V.Giménez Gómez, V.Giménez-Alventosa, F.Salvat. The PENELOPE physics models and transport mechanics. Implementation into Geant4. Front. Phys., 9, 738735(2021).

    [69] A.Cola?tis, R. K.Follett, V.Goncharov, I. V.Igumenschev, J. P.Palastro. Real and complex valued geometrical optics inverse ray-tracing for inline field calculations. Phys. Plasmas, 26, 032301(2019).

    [70] J. J.Honrubia, J.Meyer-ter-Vehn. Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. Nucl. Fusion, 46, L25-L28(2006).

    [71] J. J.Honrubia, J.Meyer-ter-Vehn. Ignition of pre-compressed fusion targets by fast electrons. J. Phys.: Conf. Ser., 112, 022055(2008).

    [72] J.-L.Feugeas, S.Gus’kov, P.Nicola?, X.Ribeyre, V. T.Tikhonchuk. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons. Phys. Plasmas, 20, 062705(2013).

    [73] J.Breil, S.Galera, P.-H.Maire. Multi-material ALE computation in inertial confinement fusion code CHIC. Comput. Fluids, 46, 161(2011).

    [74] O. N.Vassiliev. Monte Carlo Methods for Radiation Transport(2017).

    [75] A.Tentori(2022).

    Tools

    Get Citation

    Copy Citation Text

    A. Tentori, A. Colaïtis, D. Batani. 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part I[J]. Matter and Radiation at Extremes, 2022, 7(6): 065902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: Jun. 16, 2022

    Accepted: Oct. 12, 2022

    Published Online: Dec. 15, 2022

    The Author Email: Tentori A. (alessandro.tentori@mail.polimi.it)

    DOI:10.1063/5.0103631

    Topics