International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 62009(2024)
Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications
[1] [1] Parida B, Iniyan S and Goic R 2011 A review of solar photovoltaic technologies Renew. Sustain. Energy Rev.15 1625–36
[2] [2] Yang T, Chen W, Zhou K L and Ren M L 2018 Regional energy efficiency evaluation in China: a super efficiency slack-based measure model with undesirable outputs J. Clean. Prod.198 859–66
[3] [3] Kamarulzaman A, Hasanuzzaman M and Rahim N A 2021 Global advancement of solar drying technologies and its future prospects: a review Sol. Energy221 559–82
[4] [4] Colelli F P, Emmerling J, Marangoni G, Mistry M N and De Cian E 2022 Increased energy use for adaptation significantly impacts mitigation pathways Nat. Commun.13 4964
[5] [5] Parker R W R, Blanchard J L, Gardner C, Green B S, Hartmann K, Tyedmers P H and Watson R A 2018 Fuel use and greenhouse gas emissions of world fisheries Nat. Clim. Change8 333–7
[6] [6] Eskander S M S U and Fankhauser S 2020 Reduction in greenhouse gas emissions from national climate legislation Nat. Clim. Change10 750–6
[7] [7] Udeagha M C and Muchapondwa E 2023 Striving for the United Nations (UN) sustainable development goals (SDGs) in BRICS economies: the role of green finance, fintech, and natural resource rent Sustain. Dev.31 3657–72
[8] [8] Hassan A, Ilyas S Z, Jalil A and Ullah Z 2021 Monetization of the environmental damage caused by fossil fuels Environ. Sci. Pollut. Res.28 21204–11
[9] [9] Morss R E, Wilhelmi O V, Meehl G A and Dilling L 2011 Improving societal outcomes of extreme weather in a changing climate: an integrated perspective Annu. Rev. Environ. Resour.36 1–25
[10] [10] Manisalidis I, Stavropoulou E, Stavropoulos A and Bezirtzoglou E 2020 Environmental and health impacts of air pollution: a review Front. Public Health8 14
[11] [11] Proskuryakova L 2018 Updating energy security and environmental policy: energy security theories revisited J. Environ. Manage.223 203–14
[12] [12] Chen F Z, Duic N, Alves L M and Da Graa Carvalho M 2007 Renewislands—renewable energy solutions for islands Renew. Sustain. Energy Rev.11 1888–902
[13] [13] Marti L and Puertas R 2022 Sustainable energy development analysis: energy trilemma Sustain. Technol. Entrep.1 100007
[14] [14] Fang Y, Tang T Y, Li Y F, Hou C, Wen F, Yang Z, Chen T, Sun L N, Liu H C and Lee C 2021 A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications iScience24 102300
[15] [15] Liu S C, Liu X, Zhou G L, Qin F X, Jing M X, Li L, Song W L and Sun Z Z 2020 A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator Nat. Commun.11 6158
[16] [16] Salter S H 1974 Wave power Nature249 720–4
[17] [17] Barnier B, Domina A, Gulev S, Molines J M, Maitre T, Penduff T, Le Sommer J, Brasseur P, Brodeau L and Colombo P 2020 Modelling the impact of flow-driven turbine power plants on great wind-driven ocean currents and the assessment of their energy potential Nat. Energy5 240–9
[18] [18] Hu H K, Xue W D, Jiang P and Li Y 2022 Bibliometric analysis for ocean renewable energy: an comprehensive review for hotspots, frontiers, and emerging trends Renew. Sustain. Energy Rev.167 112739
[19] [19] Ellabban O, Abu-Rub H and Blaabjerg F 2014 Renewable energy resources: current status, future prospects and their enabling technology Renew. Sustain. Energy Rev.39 748–64
[20] [20] Henfridsson U, Neimane V, Strand K, Kapper R, Bernhoff H, Danielsson O, Leijon M, Sundberg J, Thorburn K and Ericsson E 2007 Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak Renew. Energy32 2069–84
[21] [21] Lpez I, Andreu J, Ceballos S, Alegra I M D and Kortabarria I 2013 Review of wave energy technologies and the necessary power-equipment Renew. Sustain. Energy Rev.27 413–34
[22] [22] De O. Falco A F 2010 Wave energy utilization: a review of the technologies Renew. Sustain. Energy Rev.14 899–918
[23] [23] Langhamer O, Haikonen K and Sundberg J 2010 Wave power—sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters Renew. Sustain. Energy Rev.14 1329–35
[24] [24] Gteman M, Giassi M, Engstrm J and Isberg J 2020 Advances and challenges in wave energy park optimization—a review Front. Energy Res.8 26
[25] [25] Iglesias G, Lpez M, Carballo R, Castro A, Fraguela J A and Frigaard P 2009 Wave energy potential in Galicia (NW Spain) Renew. Energy34 2323–33
[26] [26] McCabe A P, Bradshaw A, Meadowcroft J A C and Aggidis G 2006 Developments in the design of the PS Frog Mk 5 wave energy converter Renew. Energy31 141–51
[27] [27] Zhang Y X, Zhao Y J, Sun W and Li J X 2021 Ocean wave energy converters: technical principle, device realization, and performance evaluation Renew. Sustain. Energy Rev.141 110764
[28] [28] Zhu C Q et al 2023 Highly integrated triboelectric-electromagnetic wave energy harvester toward self-powered marine Buoy Adv. Energy Mater.13 2301665
[29] [29] Rhinefrank K et al 2006 Novel ocean energy permanent magnet linear generator buoy Renew. Energy31 1279–98
[30] [30] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy1 328–34
[31] [31] Wang Z L 2017 Catch wave power in floating nets Nature542 159–60
[32] [32] Yang Y, Zhang H L, Liu R Y, Wen X N, Hou T C and Wang Z L 2013 Fully enclosed triboelectric nanogenerators for applications in water and harsh environments Adv. Energy Mater.3 1563–8
[33] [33] Wu S S, Yang J H, Wang Y F, Liu B, Xiong Y, Jiao H S, Liu Y, Bao R R, Wang Z L and Sun Q J 2023 UFO-shaped integrated triboelectric nanogenerator for water wave energy harvesting Adv. Sustain. Syst.7 2300135
[34] [34] Wang Y Z, Nazar A M, Wang J J, Xia K Q, Wang D L, Ji X S and Jiao P C 2021 Rolling spherical triboelectric nanogenerators (RS-TENG) under low-frequency ocean wave action J. Mar. Sci. Eng.10 5
[35] [35] Lone S A, Lim K C, Kaswan K, Chatterjee S, Fan K P, Choi D, Lee S, Zhang H L, Cheng J and Lin Z H 2022 Recent advancements for improving the performance of triboelectric nanogenerator devices Nano Energy99 107318
[36] [36] Wang X F, Niu S M, Yin Y J, Yi F, You Z and Wang Z L 2015 Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy Adv. Energy Mater.5 1501467
[37] [37] Gao W C, Shao J J, Sagoe-Crentsil K and Duan W H 2021 Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model Nano Energy80 105583
[38] [38] Yang W Z, Zhao T C, Zhou S N, Niu B, Tang C X, Yan J J, Hu C and Ma Y 2024 Experimental studies on particle dampers with energy harvesting characteristics J. Vib. Eng. Technol.12 2571–83
[39] [39] Chen J et al 2015 Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy ACS Nano9 3324–31
[40] [40] Liang X, Jiang T, Feng Y W, Lu P J, An J and Wang Z L 2020 Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting Adv. Energy Mater.10 2002123
[41] [41] Feng Y W, Han J J, Xu M J, Liang X, Jiang T, Li H X and Wang Z L 2022 Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators Adv. Energy Mater.12 2103143
[42] [42] Zhang C G, Zhang B F, Yuan W, Yang O, Liu Y B, He L X, Zhao Z H, Zhou L L, Wang J and Wang Z L 2022 Seawater-based triboelectric nanogenerators for marine anticorrosion ACS Appl. Mater. Interfaces14 8605–12
[43] [43] Zhou L L, Liu L, Qiao W Y, Gao Y K, Zhao Z H, Liu D, Bian Z F, Wang J and Wang Z L 2021 Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system ACS Nano15 19684–91
[44] [44] Li X Y, Xu L and Wang Z L 2024 Networking strategies of triboelectric nanogenerators for harvesting ocean blue energy Nanoenergy Adv.4 70–96
[45] [45] Wang W L, Yang D F, Yan X R, Wang L C, Hu H and Wang K 2023 Triboelectric nanogenerators: the beginning of blue dream Front. Chem. Sci. Eng.17 635–78
[46] [46] Dip T M, Arin M R A, Anik H R, Uddin M M, Tushar S I, Sayam A and Sharma S 2023 Triboelectric nanogenerators for marine applications: recent advances in energy harvesting, monitoring, and self-powered equipment Adv. Mater. Technol.8 2300802
[47] [47] Jiang Y, Liang X, Jiang T and Wang Z L 2024 Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring Engineering33 204–24
[48] [48] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extrem. Manuf.5 042002
[49] [49] Shi Q F, Sun Z D, Zhang Z X and Lee C 2021 Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications Research2021 6849171
[50] [50] Wu M W, Zhu C Q, Liu X T, Wang H, Si J C, Xu M Y and Mi J C 2024 Recent advances in nanogenerators driven by flow-induced vibrations for harvesting energy Mater. Today Energy41 101529
[51] [51] Li Y M, Liu X, Ren Z W, Luo J J, Zhang C, Cao C Y, Yuan H and Pang Y K 2024 Marine biomaterial-based triboelectric nanogenerators: insights and applications Nano Energy119 109046
[52] [52] Yan J, Mei N, Zhang D P, Zhong Y H and Wang C 2022 Review of wave power system development and research on triboelectric nano power systems Front. Energy Res.10 966567
[53] [53] Zhang C G, Hao Y J, Yang J Y, Su W, Zhang H K, Wang J, Wang Z L and Li X H 2023 Recent advances in triboelectric nanogenerators for marine exploitation Adv. Energy Mater.13 2300387
[54] [54] Zhai H, Ding S, Chen X Y, Wu Y C and Wang Z L 2023 Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting Mater. Today65 166–88
[55] [55] Chen G Y, Xu L, Zhang P P, Chen B D, Wang G X, Ji J H, Pu X and Wang Z L 2020 Seawater degradable triboelectric nanogenerators for blue energy Adv. Mater. Technol.5 2000455
[56] [56] Wen X N, Yang W Q, Jing Q S and Wang Z L 2014 Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves ACS Nano8 7405–12
[57] [57] Jiang T, Yao Y Y, Xu L, Zhang L M, Xiao T X and Wang Z L 2017 Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy Nano Energy31 560–7
[58] [58] Xu M Y, Zhao T C, Wang C, Zhang S L, Li Z, Pan X X and Wang Z L 2019 High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy ACS Nano13 1932–9
[59] [59] Zhang Z Y, Hu Z Y, Wang Y, Wang Y W, Zhang Q Q, Liu D H, Wang H and Xu M Y 2022 Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies J. Mar. Sci. Eng.10 455
[60] [60] Chen X W, Bao G W, Xie S X, Qin X H and Wang J Q 2023 A self-powered wide-range ocean-wave sensor enabled by triboelectric nanogenerators embedded with overrunning clutches Nano Energy115 108685
[61] [61] Zhang W, He W C, Dai S G, Ma F X, Lin P, Sun J L, Dong L and Hu C G 2023 Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation Nano Energy111 108432
[62] [62] Wang H et al 2021 Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety Nano Energy84 105920
[63] [63] Jiang Q W, Jie Y, Han Y, Gao C Z, Zhu H R, Willander M, Zhang X J and Cao X 2015 Self-powered electrochemical water treatment system for sterilization and algae removal using water wave energy Nano Energy18 81–88
[64] [64] Guo H Y, Yeh M H, Zi Y L, Wen Z, Chen J, Liu G L, Hu C G and Wang Z L 2017 Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems ACS Nano11 4475–82
[65] [65] Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today30 34–51
[66] [66] Xu C et al 2018 On the electron-transfer mechanism in the contact-electrification effect Adv. Mater.30 1706790
[67] [67] Luo J J and Wang Z L 2020 Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications EcoMat2 e12059
[68] [68] Wang X Y, Zhu C Q, Wu M W, Zhang J L, Chen P F, Chen H, Jia C X, Liang X and Xu M Y 2022 A novel flow sensing and controlling system based on the flapping film triboelectric nanogenerator toward smart factories Sens. Actuators A 344 113727
[69] [69] Guo X Y et al 2024 Boosting free-rotating disk triboelectric nanogenerator through alcohol-soluble nylon film, preventing air breakdown ACS Appl. Electron. Mater.6 376–85
[70] [70] Zhao Z Q et al 2022 An array of flag-type triboelectric nanogenerators for harvesting wind energy Nanomaterials12 721
[71] [71] Wang Y, Yang E, Chen T Y, Wang J Y, Hu Z Y, Mi J C, Pan X X and Xu M Y 2020 A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing Nano Energy78 105279
[72] [72] Zou Y J et al 2022 A high-performance flag-type triboelectric nanogenerator for scavenging wind energy toward self-powered IoTs Materials15 3696
[73] [73] Wang Y et al 2021 An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition Nano Energy90 106503
[74] [74] Zhang H, Huang Y Z, Du X R, Yang Y Q, Li S Q, Fan D Y, Xiao X, Mutsuda H and Jiao P C 2024 Self-powered and self-sensing blue carbon ecosystems by hybrid fur triboelectric nanogenerators (F-TENG) Nano Energy119 109091
[75] [75] Wu M W, Zhu C Q, Si J C, Wang H, Xu M Y and Mi J C 2023 Recent progress in flow energy harvesting and sensing based on triboelectric nanogenerators Adv. Mater. Technol.8 2300919
[76] [76] Wang X Y, Chen L T, Xu Z Q, Chen P F, Ye C Y, Chen B D, Jiang T, Hong Z Y and Wang Z L 2023 High-durability stacked disc-type rolling triboelectric nanogenerators for environmental monitoring around charging buoys of unmanned ships Small20 2310809
[77] [77] Liang X, Liu S J, Lin S Q, Yang H B, Jiang T and Wang Z L 2023 Liquid–solid triboelectric nanogenerator arrays based on dynamic electric-double-layer for harvesting water wave energy Adv. Energy Mater.13 2300571
[78] [78] Hu Y C, Qiu H J, Sun Q J, Wang Z L and Xu L 2023 Wheel-structured triboelectric nanogenerators with hyperelastic networking for high-performance wave energy harvesting Small Methods7 2300582
[79] [79] Lian Z H et al 2022 A cantilever beam-based triboelectric nanogenerator as a drill pipe transverse vibration energy harvester powering intelligent exploitation system Sensors22 4287
[80] [80] Yu H Y et al 2023 High performance additional mass enhanced film structure triboelectric nanogenerator for scavenging vibration energy in broadband frequency range Nano Energy107 108182
[81] [81] Li X W, Zhou Y, Li Z J, Guo H Y, Gong Y, Zhang D, Zhang D, Zhang Q, Wang B and Peng Y 2023 Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow Energy Convers. Manage.292 117383
[82] [82] Feng T X, Ling D, Li C Y, Zheng W T, Zhang S C, Li C, Emel'yanov A, Pozdnyakov A S, Lu L J and Mao Y C 2024 Stretchable on-skin touchless screen sensor enabled by ionic hydrogel Nano Res.17 4462–70
[83] [83] Zhu P C et al 2024 Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor Nano Res.17 6550–9
[84] [84] Demircioglu O, Cicek M O, Doganay D, Gazaloglu G, Baykal C, Cinar S and Unalan H E 2023 Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions Nano Energy107 108157
[85] [85] Xia K, Xu Z, Hong Y and Wang L 2023 A free-floating structure triboelectric nanogenerator based on natural wool ball for offshore wind turbine environmental monitoring Mater. Today Sustain.24 100467
[86] [86] Wang Y, Liu X Y, Wang Y W, Wang H, Wang H, Zhang S L, Zhao T C, Xu M Y and Wang Z L 2021 Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things ACS Nano15 15700–9
[87] [87] Saqib Q M, Chougale M Y, Khan M U, Shaukat R A, Kim J, Bae J, Lee H W, Park J I, Kim M S and Lee B G 2021 Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator Nano Energy89 106458
[88] [88] Wang D Y, Zhang D Z, Tang M C, Zhang H, Sun T H, Yang C Q, Mao R Y, Li K S and Wang J H 2022 Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring Nano Energy100 107509
[89] [89] Xu H, Wang X T, Nan Y B, Zhou H, Wu Y, Wang M X, Liu W L, Duan J Z, Huang Y L and Hou B R 2023 Flexible sponge-based nanogenerator for energy harvesting from land and water transportation Adv. Funct. Mater.33 2304723
[90] [90] Bemmelen J M 1907 Der hydrogel und das kristallinische hydrat des kupferoxydes Z. Anorg. Chem.5 466
[91] [91] Ullah F, Othman M B H, Javed F, Ahmad Z and Akil H M 2015 Classification, processing and application of hydrogels: a review Mater. Sci. Eng. C 57 414–33
[92] [92] VahidMohammadi A, Rosen J and Gogotsi Y 2021 The world of two-dimensional carbides and nitrides (MXenes) Science372 eabf1581
[93] [93] Davies D K 1969 Charge generation on dielectric surfaces J. Phys. D: Appl. Phys.2 1533–7
[94] [94] Liu S L, Tong W S, Gao C X, Liu Y L, Li X N and Zhang Y H 2023 Environmentally friendly natural materials for triboelectric nanogenerators: a review J. Mater. Chem. A 11 9270–99
[95] [95] Pal A, Ganguly A, Wei P H, Barman S R, Chang C C and Lin Z H 2024 Construction of triboelectric series and chirality detection of amino acids using triboelectric nanogenerator Adv. Sci.11 2307266
[96] [96] Tao X L et al 2023 Large and tunable ranking shift in triboelectric series of polymers by introducing phthalazinone moieties Small Methods7 2201593
[97] [97] Zou H Y et al 2019 Quantifying the triboelectric series Nat. Commun.10 1427
[98] [98] Chen Q, Shang H F, Cheng B X, Lu C Z, Wang Y H, Zhang Y and Shao T M 2024 Quantifying triboelectric series of polymers based on the measurement of triboelectrification with NaCl solution Chem. Eng. J.488 150871
[99] [99] Yuan Z Q, Wang C F, Xi J G, Han X, Li J, Han S-T, Gao W and Pan C 2021 Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy ACS Energy Lett.6 2809–16
[100] [100] Ouyang R, Huang Y, Ye H T, Zhang Z J and Xue H 2022 Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting Nano Energy102 107749
[101] [101] Cheng P et al 2019 Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure Nano Energy57 432–9
[102] [102] Xia K Q, Fu J M and Xu Z W 2020 Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting Adv. Energy Mater.10 2000426
[103] [103] Luo Y Z, Li B Y, Mo L H, Ye Z C, Shen H N, Lu Y and Li S F 2022 Nanofiber-enhanced “lucky-bag” triboelectric nanogenerator for efficient wave energy harvesting by soft-contact structure Nanomaterials12 2792
[104] [104] Chen H M, Wang J and Ning A F 2021 Optimization of a rolling triboelectric nanogenerator based on the nano–micro structure for ocean environmental monitoring ACS Omega6 21059–65
[105] [105] Chau N M, Le T H, La T T H and Bui V T 2023 Industrially compatible production of customizable honeycomb-patterned poly(vinyl chloride) using food-wrapping waste for power-boosting triboelectric nanogenerator and ocean wave energy harvester J. Sci. Adv. Mater. Devices8 100637
[106] [106] Lin Z M, Zhang B B, Xie Y Y, Wu Z Y, Yang J and Wang Z L 2021 Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency Adv. Funct. Mater.31 2105237
[107] [107] Zhou Z K et al 2024 Enhancing the output of liquid–solid triboelectric nanogenerators through surface roughness optimization ACS Appl. Mater. Interfaces16 4763–71
[108] [108] Wang Y F, Guo H Y, Liao J Q, Qin Y Y, Ali A and Li C Z 2023 Solid-liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy Chem. Eng. J.476 146571
[109] [109] Lin Z M, Zhang B B, Guo H Y, Wu Z Y, Zou H Y, Yang J and Wang Z L 2019 Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy Nano Energy64 103908
[110] [110] Li S, Jiang J X, Zhai N N, Liu J Y, Feng K, Chen Y F, Wen Z, Sun X H and Zhong J 2022 A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production Nano Energy93 106870
[111] [111] Wu H, Wang Z K and Zi Y L 2021 Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density Adv. Energy Mater.11 2100038
[112] [112] Sun W X, Zheng Y B, Li T H, Feng M, Cui S W, Liu Y P, Chen S G and Wang D A 2021 Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection Energy217 119388
[113] [113] Wei X L, Zhao Z H, Zhang C G, Yuan W, Wu Z Y, Wang J and Wang Z L 2021 All-weather droplet-based triboelectric nanogenerator for wave energy harvesting ACS Nano15 13200–8
[114] [114] Dai S S, Chai Y C, Liu H X, Yu D, Wang K Y, Kong F K and Chen H L 2023 Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting Nano Energy115 108728
[115] [115] Zhang L M, Han C B, Jiang T, Zhou T, Li X H, Zhang C and Wang Z L 2016 Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy Nano Energy22 87–94
[116] [116] Xu L, Pang Y K, Zhang C, Jiang T, Chen X Y, Luo J J, Tang W, Cao X and Wang Z L 2017 Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting Nano Energy31 351–8
[117] [117] Tao K et al 2020 Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting Nano Energy67 104197
[118] [118] Tripathy R R, Sahoo R, Mishra S, Das B, Balasubramaniam S and Ramadoss A 2023 Fabrication and feasibility study of polymer-based triboelectric nanogenerator towards blue energy harvesting Green Energy Resour.1 100006
[119] [119] Ding Z D, Tian Z J, Ji X X, Wang D X, Ci X, Shao X J and Rojas O J 2023 Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting Int. J. Biol. Macromol.234 122903
[120] [120] Zhang C Y, Zhang W L, Du G L, Fu Q, Mo J L and Nie S X 2023 Superhydrophobic cellulosic triboelectric materials for distributed energy harvesting Chem. Eng. J.452 139259
[121] [121] Yang H M, Fan F R, Xi Y and Wu W Z 2020 Bio-derived natural materials based triboelectric devices for self-powered ubiquitous wearable and implantable intelligent devices Adv. Sustain. Syst.4 2000108
[122] [122] Su Z P, Yang Y, Huang Q B, Chen R W, Ge W J, Fang Z Q, Huang F and Wang X H 2022 Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives Prog. Mater. Sci.125 100917
[123] [123] Haghayegh M, Cao R, Zabihi F, Bagherzadeh R, Yang S Y and Zhu M F 2022 Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators J. Mater. Chem. C 10 11439–71
[124] [124] Pang Y K, Xi F B, Luo J J, Liu G X, Guo T and Zhang C 2018 An alginate film-based degradable triboelectric nanogenerator RSC Adv.8 6719–26
[125] [125] Wang B Q, Wu Y, Liu Y, Zheng Y B, Liu Y, Xu C G, Kong X, Feng Y G, Zhang X L and Wang D A 2020 New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting ACS Appl. Mater. Interfaces12 31351–9
[126] [126] Zaw N Y W, Yun J, Goh T S, Kim I, Kim Y, Lee J S and Kim D 2022 All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection Energy247 123422
[127] [127] Ahn J et al 2022 All-recyclable triboelectric nanogenerator for sustainable ocean monitoring systems Adv. Energy Mater.12 2201341
[128] [128] Miao X, Yang H X, Li Z K, Cheng M F, Zhao Y L, Wan L Y, Yu A F and Zhai J Y 2024 A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction Nano Res.17 3029–34
[129] [129] Li W T, Wan L Y, Lin Y, Liu G L, Qu H, Wen H G, Ding J J, Ning H and Yao H L 2022 Synchronous nanogenerator with intermittent sliding friction self-excitation for water wave energy harvesting Nano Energy95 106994
[130] [130] Cai N X, Sun P and Jiang S H 2021 Rapid prototyping and customizable multifunctional structures: 3D-printing technology promotes the rapid development of TENGs J. Mater. Chem. A 9 16255–80
[131] [131] Jing Z X, Zhang J C, Wang J L, Zhu M K, Wang X X, Cheng T H, Zhu J Y and Wang Z L 2022 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy Nano Res.15 5098–104
[132] [132] Xi F B, Pang Y K, Liu G X, Wang S W, Li W, Zhang C and Wang Z L 2019 Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission Nano Energy61 1–9
[133] [133] Li Y H, Guo Z T, Zhao Z H, Gao Y K, Yang P Y, Qiao W Y, Zhou L L, Wang J and Wang Z L 2023 Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting Appl. Energy336 120792
[134] [134] Zhong W, Xu L, Yang X D, Tang W, Shao J J, Chen B D and Wang Z L 2019 Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting Nanoscale11 7199–208
[135] [135] Yuan W, Zhang B F, Zhang C G, Yang O, Liu Y B, He L X, Zhou L L, Zhao Z H, Wang J and Wang Z L 2022 Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting One Earth5 1055–63
[136] [136] Wen H G, Yang P Y, Liu G L, Xu S X, Yao H L, Li W T, Qu H, Ding J J, Li J Y and Wan L Y 2022 Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom Nano Energy93 106796
[137] [137] Li H H, Liang C J, Ning H, Liu J Q, Zheng C Y, Li J Y, Yao H L, Peng Y, Wan L Y and Liu G L 2022 O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas Nano Energy103 107812
[138] [138] Feng J R, Zhou H L, Cao Z, Zhang E Y, Xu S X, Li W T, Yao H L, Wan L Y and Liu G L 2022 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas Adv. Sci.9 2204407
[139] [139] Yang X D, Xu L, Lin P, Zhong W, Bai Y, Luo J J, Chen J and Wang Z L 2019 Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting Nano Energy60 404–12
[140] [140] Liu L Q, Yang X L, Zhao L L, Hong H X, Cui H, Duan J L, Yang Q M and Tang Q W 2021 Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting ACS Nano15 9412–21
[141] [141] Wang H, Zhu C Q, Wang W C, Xu R J, Chen P E, Du T L, Xue T X, Wang Z Y and Xu M Y 2022 A stackable triboelectric nanogenerator for wave-driven marine buoys Nanomaterials12 594
[142] [142] Ying Q Y, Wu J Y and Liu C 2024 Multi-track triboelectric nanogenerator toward omnidirectional ocean wave energy harvesting Adv. Mater. Technol.9 2301824
[143] [143] Duan Y X, Xu H X, Liu S J, Chen P F, Wang X Y, Xu L, Jiang T and Wang Z L 2023 Scalable rolling-structured triboelectric nanogenerator with high power density for water wave energy harvesting toward marine environmental monitoring Nano Res.16 11646–52
[144] [144] Xiao T X, Liang X, Jiang T, Xu L, Shao J J, Nie J H, Bai Y, Zhong W and Wang Z L 2018 Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting Adv. Funct. Mater.28 1802634
[145] [145] Lei R, Zhai H, Nie J H, Zhong W, Bai Y, Liang X, Xu L, Jiang T, Chen X Y and Wang Z L 2019 Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting Adv. Mater. Technol.4 1800514
[146] [146] Liang X, Jiang T, Liu G X, Feng Y W, Zhang C and Wang Z L 2020 Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy Energy Environ. Sci.13 277–85
[147] [147] Liang X, Liu Z R, Feng Y W, Han J J, Li L L, An J, Chen P F, Jiang T and Wang Z L 2021 Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting Nano Energy83 105836
[148] [148] Wang A Q, Chen J, Wang L, Han J L, Su W G, Li A Q, Liu P B, Duan L Y, Xu C H and Zeng Z 2022 Numerical analysis and experimental study of an ocean wave tetrahedral triboelectric nanogenerator Appl. Energy307 118174
[149] [149] Liang X, Liu S J, Ren Z W, Jiang T and Wang Z L 2022 Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming Adv. Funct. Mater.32 2205313
[150] [150] Liu S J, Liang X, Chen P F, Long H R, Jiang T and Wang Z L 2023 Multilayered helical spherical triboelectric nanogenerator with charge shuttling for water wave energy harvesting Small Methods7 2201392
[151] [151] Jung H, Ouro-Koura H, Salalila A, Salalila M and Deng Z D 2022 Frequency-multiplied cylindrical triboelectric nanogenerator for harvesting low frequency wave energy to power ocean observation system Nano Energy99 107365
[152] [152] Yang Y H, Zheng L, Wen J, Xing F J, Liu H, Shang Y R, Wang Z L and Chen B 2023 A swing self-regulated triboelectric nanogenerator for high-entropy ocean breaking waves energy harvesting Adv. Funct. Mater.33 2304366
[153] [153] Gao Q, Xu Y H, Yu X, Jing Z X, Cheng T H and Wang Z L 2022 Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy ACS Nano16 6781–8
[154] [154] Feng Y W, Jiang T, Liang X, An J and Wang Z L 2020 Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy Appl. Phys. Rev.7 021401
[155] [155] Wang J L, Li Y K, Xie Z J, Xu Y H, Zhou J W, Cheng T H, Zhao H W and Wang Z L 2020 Cylindrical direct-current triboelectric nanogenerator with constant output current Adv. Energy Mater.10 1904227
[156] [156] Yang Y H, Wen J, Chen F R, Hao Y T, Gao X B, Jiang T, Chen B D and Wang Z L 2022 Barycenter self-adapting triboelectric nanogenerator for sea water wave high-entropy energy harvesting and self-powered forecasting in marine meteorology Adv. Funct. Mater.32 2200521
[157] [157] Jiang W Y, Chen C J, Wang C Y, Li J W, Zhao M M, Xiang T F and Wang P 2023 Design of triboelectric nanogenerators featuring motion form conversion, motion rectification, and frequency multiplication for low-frequency ocean energy harvesting Energy Environ. Sci.16 6003–14
[158] [158] Qiu H J, Wang H M, Xu L, Zheng M L and Wang Z L 2023 Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves Energy Environ. Sci.16 473–83
[159] [159] Zhang C G, Yuan W, Zhang B F, Yang J Y, Hu Y X, He L X, Zhao X J, Li X H, Wang Z L and Wang J 2023 A rotating triboelectric nanogenerator driven by bidirectional swing for water wave energy harvesting Small19 2304412
[160] [160] Han J J, Liu Y, Feng Y W, Jiang T and Wang Z L 2023 Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring Adv. Energy Mater.13 2203219
[161] [161] Jiang T, Pang H, An J, Lu P J, Feng Y W, Liang X, Zhong W and Wang Z L 2020 Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting Adv. Energy Mater.10 2000064
[162] [162] Tan D J, Zeng Q X, Wang X, Yuan S L, Luo Y L, Zhang X F, Tan L M, Hu C G and Liu G L 2022 Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting Nano-Micro Lett.14 124
[163] [163] Xu L, Jiang T, Lin P, Shao J J, He C, Zhong W, Chen X Y and Wang Z L 2018 Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting ACS Nano12 1849–58
[164] [164] Liu W B, Xu L, Liu G X, Yang H, Bu T Z, Fu X P, Xu S H, Fang C L and Zhang C 2020 Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy iScience23 101848
[165] [165] Liu G L, Xiao L F, Chen C Y, Liu W L, Pu X J, Wu Z Y, Hu C G and Wang Z L 2020 Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting Nano Energy75 104975
[166] [166] Li X Y, Xu L, Lin P, Yang X D, Wang H M, Qin H F and Wang Z L 2023 Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure Energy Environ. Sci.16 3040–52
[167] [167] Zhu Z Y, Xiang H J, Zeng Y M, Zhu J Q, Cao X, Wang N and Wang Z L 2022 Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis Nano Energy93 106776
[168] [168] Leung S F, Fu H C, Zhang M L, Hassan A H, Jiang T, Salama K N, Wang Z L and He J H 2020 Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction Energy Environ. Sci.13 1300–8
[169] [169] Hou C, Chen T, Li Y F, Huang M J, Shi Q F, Liu H C, Sun L N and Lee C 2019 A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications Nano Energy63 103871
[170] [170] Zhang X Q et al 2019 Self-powered distributed water level sensors based on liquid–solid triboelectric nanogenerators for ship draft detecting Adv. Funct. Mater.29 1900327
[171] [171] Shan C C et al 2023 Dual mode TENG with self-voltage multiplying circuit for blue energy harvesting and water wave monitoring Adv. Funct. Mater.33 2305768
[172] [172] Liu H Y, Xiao Y, Xu Y, Zhang S C, Qu C M and Zhang Y L 2023 A highly adaptive real-time water wave sensing array for marine applications Nanoscale15 9162–70
[173] [173] Liu L, Shi Q F, Ho J S and Lee C 2019 Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications Nano Energy66 104167
[174] [174] Liu L, Shi Q F and Lee C 2020 A novel hybridized blue energy harvester aiming at all-weather IoT applications Nano Energy76 105052
[175] [175] Bai Y, Xu L, He C, Zhu L P, Yang X D, Jiang T, Nie J H, Zhong W and Wang Z L 2019 High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping Nano Energy66 104117
[176] [176] Shi Q F, Wang H, Wu H and Lee C 2017 Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm Nano Energy40 203–13
[177] [177] Liu J H et al 2024 Underwater biomimetic lateral line sensor based on triboelectric nanogenerator for dynamic pressure monitoring and trajectory perception Small20 2308491
[178] [178] Zhao D, Li H Y, Wang J L, Gao Q, Yu Y, Wen J M, Wang Z L and Cheng T H 2023 A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy Nano Res.16 10931–7
[179] [179] Zhao D, Li H Y, Yu Y, Wang Y T, Wang J L, Gao Q, Wang Z L, Wen J M and Cheng T H 2023 A current-enhanced triboelectric nanogenerator with crossed rollers for harvesting wave energy Nano Energy117 108885
[180] [180] Chandrasekhar A, Vivekananthan V, Khandelwal G and Kim S J 2020 A sustainable blue energy scavenging smart buoy toward self-powered smart fishing net tracker ACS Sustain. Chem. Eng.8 4120–7
[181] [181] Li X Y, Tao J, Wang X D, Zhu J, Pan C F and Wang Z L 2018 Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy Adv. Energy Mater.8 1800705
[182] [182] Zhao X J, Tian J J, Kuang S Y, Ouyang H, Yan L, Wang Z L, Li Z and Zhu G 2016 Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation Adv. Mater. Interfaces3 1600187
[183] [183] Wang X Y, Ye C Y, Chen P F, Pang H, Wei C H, Duan Y X, Jiang T and Wang Z L 2024 Achieving high power density and durability of multilayered swing-structured triboelectric nanogenerator toward marine environmental protection Adv. Funct. Mater.34 2311196
[184] [184] Mo J L, Liu Y H, Fu Q, Cai C C, Lu Y X, Wu W H, Zhao Z X, Song H N, Wang S F and Nie S X 2022 Triboelectric nanogenerators for enhanced degradation of antibiotics via external electric field Nano Energy93 106842
[185] [185] Xu G Q, Li X Y, Fu J J, Zhou Y K, Xia X and Zi Y L 2023 Environmental lifecycle assessment of CO2 -filled triboelectric nanogenerators to help achieve carbon neutrality Energy Environ. Sci.16 2112–9
[186] [186] Ahmed A, Wang Y N, Azam A, Li N, Jia C Y and Zhang Z T 2023 Design of an S-shaped point-absorber wave energy converter with a non-linear PTO to power the satellite-respondent buoys in the East China Sea Ocean Eng.275 114162
[187] [187] Zhang Y K, Wen Y, Han X Y, Zhang W D, Gao F and Chen W X 2023 Gyroscopic wave energy converter with a self-accelerating rotor in WEC-glider Ocean Eng.273 113819
[188] [188] Ding W J, Song B W, Mao Z Y and Wang K Y 2016 Experimental investigations on a low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms J. Mar. Sci. Technol.21 359–67
[189] [189] Chen W X, Lu Y F, Li S X and Gao F 2023 A bio-inspired foldable-wing wave energy converter for ocean robots Appl. Energy334 120696
[190] [190] Jia C Y, Cao H, Pan H Y, Ahmed A, Jiang Z J, Azam A, Zhang Z T and Pan Y J 2022 A wave energy converter based on a zero-pressure-angle mechanism for self-powered applications in near-zero energy sea-crossing bridges Smart Mater. Struct.31 095006
[191] [191] Liang C W, Ai J X and Zuo L 2017 Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier Ocean Eng.136 190–200
[192] [192] Binh P C, Tri N M, Dung D T, Ahn K K, Kim S J and Koo W 2016 Analysis, design and experiment investigation of a novel wave energy converter IET Gen. Transm. Distrib.10 460–9
Get Citation
Copy Citation Text
Zhu Chuanqing, Xiang Cheng, Wu Mengwei, Yu Chengnuo, Dai Shu, Sun Qijun, Zhou Tongming, Wang Hao, Xu Minyi. Recent advances in wave-driven triboelectric nanogenerators: from manufacturing to applications[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62009
Category: Topical Review
Received: Mar. 1, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: