Journal of the Chinese Ceramic Society, Volume. 50, Issue 11, 3021(2022)

Research Progress on Data Science of Solid Oxide Fuel Cells, Lithium Batteries, CO2 Electroreduction Catalysts

XU Jianbing1...2,*, LI Hanshi3, TAN Jimin4, HAN Minfang5, and CHEN Di16 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • show less
    References(65)

    [1] [1] MAC DOWELL N, FENNELL P S, SHAH N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nat Clim Chang, 2017, 7(4): 243-249.

    [2] [2] CAI Y, SAM C Y, CHANG T. Nexus between clean energy consumption, economic growth and CO2 emissions[J]. J Clean Prod, 2018, 182: 1001-1011.

    [3] [3] QIAO W, LU H, ZHOU G, et al. A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer[J]. J Clean Prod, 2020, 244: 118612.

    [4] [4] ANDERSON T R, HAWKINS E, JONES P D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models[J]. Endeavour, 2016, 40(3): 178-187.

    [5] [5] LOVELOCK C E, CAHOON D R, FRIESS D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574): 559-563.

    [6] [6] HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: status, challenges, and perspectives[J]. Adv Sci, 2019, 6(21): 1900808.

    [7] [7] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76.

    [8] [8] LI B, DUAN Y, LUEBKE D, et al. Advances in CO2 capture technology: A patent review[J]. Appl Energy, 2013, 102: 1439-1447.

    [9] [9] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nat Mater, 2016, 16(1): 16-22.

    [10] [10] BOTU V, RAMPRASAD R. Learning scheme to predict atomic forces and accelerate materials simulations[J]. Phys Rev B, 2015, 92(9): 94306.

    [11] [11] LI Z, LI H, SHAO L. Improving online customer shopping experience with computer vision and machine learning methods[J]. Lect Notes Comput Sci, 2016, 9751: 427-436.

    [12] [12] KIM K jae, AHN H. A recommender system using GA K-means clustering in an online shopping market[J]. Expert Syst Appl, 2008, 34(2): 1200-1209.

    [13] [13] SAMANT P, AGARWAL R. Machine learning techniques for medical diagnosis of diabetes using iris images[J]. Comput Methods Programs Biomed, 2018, 157: 121-128.

    [14] [14] WU M, CHEN L. Image recognition based on deep learning[J]. Proc - 2015 Chinese Autom Congr CAC, 2015, 2016: 542-546.

    [15] [15] LIPPMANN R. An introduction to computing with neural nets[J]. IEEE Assp Mag, 1987, 4(2): 4-22.

    [16] [16] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [17] [17] ZHANG C, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization[J]. Communications of the ACM, 2021, 64(3): 107-115.

    [21] [21] GHIABI C, GHAFFARINEJAD A, KAZEMI H, et al. In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media[J]. Renew Energy, 2018, 126: 1085-1092.

    [22] [22] MEHMETI A, MCPHAIL S J, PUMIGLIA D, et al. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications[J]. J Power Sources, 2016, 325: 772-785.

    [23] [23] CASCOS V, FERNNDEZ-DAZ M T, ALONSO J A. Structural and electrical characterization of the novel SrCo1-xTixO3-x (x = 0.05, 0.1 and 0.15) perovskites: Evaluation as cathode materials in solid oxide fuel cells[J]. Renew Energy, 2019, 133: 205-215.

    [24] [24] ARRIAGADA J, OLAUSSON P, SELIMOVIC A. Artificial neural network simulator for SOFC performance prediction[J]. J Power Sources, 2002, 112(1): 54-60.

    [25] [25] KANG Y W, LI J, CAO G Y, et al. Dynamic temperature modeling of an SOFC using least squares support vector machines[J]. J Power Sources, 2008, 179(2): 683-692.

    [26] [26] WU X J, HUANG Q, ZHU X J. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM[J]. Int J Hydrogen Energy, 2011, 36(1): 885-892.

    [27] [27] CHEN J, CHEN Y, ZHANG H. Study on Fuel Utilization Dynamic model of a SOFC-GT Hybrid System Based on Deep Learning Technique[C]//E3S Web of Conferences. EDP Sciences, 2019, 113: 1-6.

    [28] [28] SHAO Q, GAO E, MARA T, et al. Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions[J]. Appl Energy, 2020, 260: 114318.

    [29] [29] SONG S, XIONG X, WU X, et al. Modeling the SOFC by BP neural network algorithm[J]. Int J Hydrogen Energy, 2021, 46(38): 20065-20077.

    [30] [30] XU H, MA J, TAN P, et al. Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation[J]. Energy AI, 2020, 1: 100003.

    [31] [31] LI Y, SHEN J, LU J. Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J]. J Power Sources, 2011, 196(14): 5873-5880.

    [32] [32] NASSEF A M, FATHY A, SAYED E T, et al. Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms[J]. Renew Energy, 2019, 138: 458-464.

    [33] [33] GHORBANI B, VIJAYARAGHAVAN K. Developing a virtual hydrogen sensor for detecting fuel starvation in solid oxide fuel cells using different machine learning algorithms[J]. Int J Hydrogen Energy, 2020, 45(51): 27730-27744.

    [34] [34] WANG Y, WU C, ZHAO S, et al. Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell[J]. Appl Energy, 2022, 315: 119046.

    [35] [35] LI S, CAO H, YANG Y. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification[J]. J Power Sources, 2018, 378(1): 646-659.

    [36] [36] MENG-TING C, XIAO-WEI F, ZHONG-HUA D, et al. Data-Driven Fault Detection for SOFC system based on Random Forest and SVM[C]//2019 Chinese Automation Congress (CAC). IEEE, 2019: 2829-2834.

    [37] [37] ZHANG Z, LI S, XIAO Y, et al. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning[J]. Appl Energy, 2019, 233-234: 930-942.

    [38] [38] ZHENG Y, WU X long, ZHAO D, et al. Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system[J]. J Power Sources, 2021, 490: 229561.

    [39] [39] SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat Energy, 2019, 4(5): 383-391.

    [40] [40] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. J Power Sources, 2013, 239: 680-688.

    [41] [41] PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Appl Energy, 2015, 159: 285-297.

    [42] [42] ZHANG Y Y, TANG Q, ZHANG Y Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nat Commun, 2020, 11(1): 1-6.

    [43] [43] TRAN M K, PANCHAL S, CHAUHAN V, et al. Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery[J]. Int J Energy Res, 2022, 46(2): 786-794.

    [44] [44] ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Appl Energy, 2017, 207: 354-362.

    [45] [45] WU J, ZHANG C, CHEN Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Appl Energy, 2016, 173: 134-140.

    [46] [46] CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. J Power Sources, 2018, 400: 242-255.

    [47] [47] ZAHID T, XU K, LI W, et al. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles[J]. Energy, 2018, 162: 871-882.

    [48] [48] SHEN S, NEMANI V, LIU J, et al. A hybrid machine learning model for battery cycle life prediction with early cycle data[C]//2020 IEEE Transportation Electrification Conference & Expo (ITEC). IEEE, 2020: 181-184.

    [49] [49] HOUCHINS G, VISWANATHAN V. An accurate machine-learning calculator for optimization of Li-ion battery cathodes[J]. J Chem Phys, 2020, 153(5): 054124.

    [50] [50] JIANG Z, LI J, YANG Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat Commun, 2020, 11(1): 1-9.

    [51] [51] JOSHI R P, EICKHOLT J, LI L, et al. Machine learning the voltage of electrode materials in metal-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(20): 18494-18503.

    [52] [52] SHEN S, SADOUGHI M, CHEN X, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. J Energy Storage, 2019, 25: 100817.

    [53] [53] WARD L, AGRAWAL A, CHOUDHARY A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials[J]. npj Comput Mater, 2016, 2(1): 1-7.

    [54] [54] MOSES I A, JOSHI R P, OZDEMIR B, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Appl Mater Interfaces, 2021, 13(45): 53355-53362.

    [55] [55] ZHOU L, YAO A M, WU Y, et al. Machine Learning Assisted Prediction of Cathode Materials for Zn-Ion Batteries[J]. Adv Theory Simulations, 2021, 4(9): 1-6.

    [56] [56] HONG C, ZHANG Q, HE K, et al. Variations of China’s emission estimates: Response to uncertainties in energy statistics[J]. Atmos Chem Phys, 2017, 17(2): 1227-1239.

    [57] [57] MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations[J]. Int J Greenh Gas Control, 2010, 4(4): 659-667.

    [58] [58] AMINU M D, NABAVI S A, ROCHELLE C A, et al. A review of developments in carbon dioxide storage[J]. Appl Energy, 2017, 208: 1389-1419.

    [59] [59] FU H Q, ZHANG L, ZHENG L R, et al. Enhanced CO2 electroreduction performance over Cl-modified metal catalysts[J]. J Mater Chem A, 2019, 7(20): 12420-12425.

    [60] [60] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 43(2).631-675.

    [61] [61] HOANG T T H, VERMA S, MA S, et al. Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol[J]. J Am Chem Soc, 2018, 140(17): 5791-5797.

    [62] [62] CHEN A, ZHANG X, CHEN L, et al. A machine learning model on simple features for CO2 reduction electrocatalysts[J]. J Phys Chem C, 2020.22471-22478.

    [63] [63] MA X, LI Z, ACHENIE L E K, et al. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening[J]. J Phys Chem Lett, 2015, 6(18): 3528-3533.

    [64] [64] LI Z, MA X, XIN H. Feature engineering of machine-learning chemisorption models for catalyst design[J]. Catal today, 2017, 280(2): 232-238.

    [65] [65] ULISSI Z W, TANG M T, XIAO J, et al. Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction[J]. ACS Catal, 2017, 7(10): 6600-6608.

    [66] [66] CHEN Y, HUANG Y, CHENG T, et al. Identifying active sites for CO2 reduction on dealloyed gold surfaces by combining machine learning with multiscale simulations[J]. J Am Chem Soc, 2019, 141(29): 11651-11657.

    [67] [67] GUSAROV S, STOYANOV S R, SIAHROSTAMI S. Development of fukui function based descriptors for a machine learning study of CO2 reduction[J]. J Phys Chem C, 2020, 124(18): 10079-10084.

    Tools

    Get Citation

    Copy Citation Text

    XU Jianbing, LI Hanshi, TAN Jimin, HAN Minfang, CHEN Di. Research Progress on Data Science of Solid Oxide Fuel Cells, Lithium Batteries, CO2 Electroreduction Catalysts[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 3021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 28, 2022

    Accepted: --

    Published Online: Jan. 27, 2023

    The Author Email: Jianbing XU (xujianbing@mail.tsinghua.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220433

    Topics