Photonics Research, Volume. 10, Issue 8, 1924(2022)

Flat-field superoscillation metalens

Dingpeng Liao1、†, Fengliang Dong2、†, Kun Zhang1,2、†, Yi Zhou1, Gaofeng Liang1, Zhihai Zhang1, Zhongquan Wen1, Zhengguo Shang1, Gang Chen1、*, Luru Dai2,3, and Weiguo Chu2,4
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • 2National Center for Nanoscience and Technology, Beijing 100190, China
  • 3e-mail: dai@nanoctr.cn
  • 4e-mail: wgchu@nanoctr.cn
  • show less
    References(46)

    [1] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [2] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [3] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4572(2006).

    [4] F. Wei, Z. Liu. Plasmonic structured illumination microscopy. Nano Lett., 10, 2531-2536(2010).

    [5] X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, Q. Yang. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett., 118, 076101(2017).

    [6] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [7] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-468(1873).

    [8] M. V. Berry. Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A, 27, L391-L398(1994).

    [9] M. V. Berry, S. Popescu. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A, 39, 6965-6977(2006).

    [10] M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F. Qin, M. Hong, X. Luo, R. Remez, A. Arie, J. B. Götte, M. R. Dennis, A. M. Wong, G. V. Eleftheriades, Y. Eliezer, A. Bahabad, G. Chen, Z. Wen, G. Liang, C. Hao, C. Qiu, A. Kempf, E. Katzav, M. Schwartz. Roadmap on superoscillations. J. Opt., 21, 053002(2019).

    [11] G. Chen, Z. Wen, C. Qiu. Superoscillation: from physics to optical applications. Light Sci. Appl., 8, 56(2019).

    [12] F. M. Huang, N. I. Zheludev. Super-resolution without evanescent waves. Nano Lett., 9, 1249-1254(2009).

    [13] K. Huang, H. Ye, J. Teng, S. P. Yeo, B. Luk’yanchuk, C. W. Qiu. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photon. Rev., 8, 152-157(2014).

    [14] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).

    [15] F. Qin, K. Huang, J. F. Wu, J. H. Teng, C. W. Qiu, M. H. Hong. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [16] G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, L. Chen, L. Dai, S. Jiang, F. Lin. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light. Opt. Express, 24, 11002-11008(2016).

    [17] G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, S. Liu. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array. IEEE Photon. Technol. Lett., 28, 335-338(2016).

    [18] G. Chen, Y. Li, A. Yu, Z. Wen, L. Dai, L. Chen, Z. Zhang, S. Jiang, K. Zhang, X. Wang, F. Lin. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation. Sci. Rep., 6, 29068(2016).

    [19] G. Yuan, K. Rogers, E. T. F. Rogers, N. I. Zheludev. Far-field superoscillatory metamaterial superlens. Phys. Rev. Appl., 11, 064016(2019).

    [20] Y. W. Hu, S. W. Wang, J. H. Jia, S. H. Fu, H. Yin, Z. Li, Z. Q. Chen. Optical superoscillatory waves without side lobes along a symmetric cut. Adv. Photon., 3, 045002(2021).

    [21] E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev. Super-oscillatory optical needle. Appl. Phys. Lett., 102, 031108(2013).

    [22] G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, N. I. Zheludev. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. Sci. Rep., 4, 6333(2014).

    [23] A. P. Yu, G. Chen, Z. H. Zhang, Z. Q. Wen, L. R. Dai, K. Zhang, S. L. Jiang, Z. X. Wu, Y. Y. Li, C. T. Wang, X. G. Luo. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens. Sci. Rep., 6, 38859(2016).

    [24] G. Chen, Z. Wu, A. Yu, Z. Zhang, Z. Wen, K. Zhang, L. Dai, S. Jiang, Y. Li, L. Chen, C. Wang, X. Luo. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave. Sci. Rep., 6, 37776(2016).

    [25] Z. Wu, Q. Jin, K. Zhang, Z. Zhang, G. Liang, Z. Wen, A. Yu, G. Chen. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave. Opto-Electron. Eng., 45, 170660(2018).

    [26] S. Zhang, H. Chen, Z. Wu, K. Zhang, Y. Li, G. Chen, Z. Zhang, Z. Wen, L. Dai, L. Wang. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression. Opt. Express, 25, 27104-27118(2017).

    [27] Z. Wu, K. Zhang, S. Zhang, Q. Jin, Z. Wen, L. Wang, L. Dai, Z. Zhang, H. Chen, G. Liang, Y. Liu, G. Chen. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams. Opt. Express, 26, 16585-16599(2018).

    [28] Z. Wu, Q. Jin, S. Zhang, K. Zhang, L. Wang, L. Dai, Z. Zhang, Z. Wen, G. Liang, Y. Liu, G. Chen. Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave. Opt. Express, 26, 7866-7875(2018).

    [29] R. Zuo, W. Liu, H. Cheng, S. Chen, J. Tian. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Adv. Opt. Mater., 6, 1800795(2018).

    [30] Q. He, S. Sun, S. Xiao, L. Zhou. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [31] S. Chen, Y. Zhang, Z. Li, H. Cheng, J. Tian. Empowered layer effects and prominent properties in few-layer metasurfaces. Adv. Opt. Mater., 7, 1801477(2019).

    [32] Y. B. Zhang, H. Liu, H. Cheng, J. G. Tian, S. Q. Chen. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv., 3, 200002(2020).

    [33] X. G. Luo. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater., 6, 1701201(2018).

    [34] Q. Fan, W. Xu, X. Hu, W. Zhu, T. Yue, C. Zhang, F. Yan, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun., 13, 2130(2022).

    [35] Y. Hu, X. Wang, X. Luo, X. Ou, L. Li, Y. Chen, P. Yang, S. Wang, H. Duan. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 9, 3755-3780(2020).

    [36] Y. Wang, Q. Fan, T. Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv., 4, 200008(2021).

    [37] A. Kalvach, Z. Szabó. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B, 33, A66-A71(2016).

    [38] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017).

    [39] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [40] M. B. Pu, X. Li, Y. H. Guo, X. L. Ma, X. G. Luo. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express, 25, 31471-31477(2017).

    [41] Q. Zhang, F. Dong, H. Li, Z. Wang, G. Liang, Z. Zhang, Z. Wen, G. Chen, L. Dai, W. Chu. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light. Adv. Opt. Mater., 8, 1901885(2020).

    [42] Z. Li, C. Wang, Y. Wang, X. Lu, Y. Guo, X. Li, X. Ma, M. Pu, X. G. Luo. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle. Opt. Express, 29, 9991-9999(2021).

    [43] S. Pancharatnam. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A, 44, 398-417(1956).

    [44] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [45] N. Jin, Y. Rahmat-Samii. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Anntenas Propag., 55, 556-567(2007).

    [46] L. Novotny, B. Hecht. Principles of Nano-Optics(2006).

    Tools

    Get Citation

    Copy Citation Text

    Dingpeng Liao, Fengliang Dong, Kun Zhang, Yi Zhou, Gaofeng Liang, Zhihai Zhang, Zhongquan Wen, Zhengguo Shang, Gang Chen, Luru Dai, Weiguo Chu. Flat-field superoscillation metalens[J]. Photonics Research, 2022, 10(8): 1924

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 2, 2022

    Accepted: Jun. 28, 2022

    Published Online: Jul. 27, 2022

    The Author Email: Gang Chen (gchen1@cqu.edu.cn)

    DOI:10.1364/PRJ.462848

    Topics