Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2900(2024)

Effect of Sm Doping on Temperature Stability of Field-Induced Strain in Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics

YUAN Huan and LING Zhiyuan*
Author Affiliations
  • [in Chinese]
  • show less
    References(26)

    [1] [1] LI R Q, ZHU Y C, WANG R, et al. Design and analysis of a nested structure micro-displacement amplification mechanism for a galfenol-based actuator[J]. Smart Mater Struct, 2019, 28(9): 095026.

    [2] [2] IQBAL S, MALIK A. A review on MEMS based micro displacement amplification mechanisms[J]. Sens Actuat A Phys, 2019, 300: 111666.

    [3] [3] SUN X Q, WANG Z L, YANG Y K. Design and experimental investigation of a novel compliant positioning stage with low-frequency vibration isolation capability[J]. Sens Actuat A Phys, 2019, 295: 439–449.

    [4] [4] SHI H, TAN K, XU J, et al. Design and performance analysis of magnetic shape memory alloy actuator with a compact electromagnetic coil configuration[J]. IEEE Trans Magn, 2020, 56(8): 2000413.

    [5] [5] KWAK Y K, KIM S H, AHN J H. Improvement of positioning accuracy of magnetostrictive actuator by means of built–in air cooling and temperature control[J]. Int J Precis Eng Manuf, 2011, 12(5): 829–834.

    [6] [6] MOHITH S, UPADHYA A R, NAVIN K P, et al. Recent trends in piezoelectric actuators for precision motion and their applications: A review[J]. Smart Mater Struct, 2021, 30(1): 013002.

    [7] [7] CHORSI M T, CURRY E J, CHORSI H T, et al. Piezoelectric biomaterials for sensors and actuators[J]. Adv Mater, 2019, 31(1): e1802084.

    [8] [8] MIRVAKILI S M, HUNTER I W. Artificial muscles: Mechanisms, applications, and challenges[J]. Adv Mater, 2018, 30(6): 1704407.

    [9] [9] SWARTZ S L, SHROUT T R. Fabrication of perovskite lead magnesium niobate[J]. Mater Res Bull, 1982, 17(10): 1245–1250.

    [10] [10] TOPOLOVL V Y and YE Z G. Coexistence of morphotropic phases in(1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 solid solutions [J]. Phys Rev B, 2004, 70: 094113.

    [11] [11] CROSS L E, JANG S J, NEWNHAM R E, et al. Large electrostrictive effects in relaxor ferroelectrics[J]. Ferroelectrics, 1980, 23(1): 187–191.

    [12] [12] ZHAO J, ZHANG Q M, KIM N, et al. Electromechanical properties of relaxor ferroelectric lead magnesium niobate-lead titanate ceramics[J]. Jpn J Appl Phys, 1995, 34(10R): 5658.

    [13] [13] PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. J Appl Phys, 1997, 82(4): 1804–1811.

    [14] [14] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nat Mater, 2018, 17(4): 349–354.

    [15] [15] LIU Y F, LING Z Y, ZHUO Z P. Evolution of depolarization temperature of PLZT from normal to relaxor ferroelectrics[J]. J Appl Phys, 2018, 124(16): 164102.

    [16] [16] OTONICAR M, REICHMANN A, REICHMANN K. Electric field-induced changes of domain structure and properties in La-doped PZT—From ferroelectrics towards relaxors[J]. J Eur Ceram Soc, 2016, 36(10): 2495–2504.

    [17] [17] NOHEDA B, COX D, SHIRANE G, et al. Phase diagram of the ferroelectric relaxor (1–x)PbMg1/3Nb2/3O3–xPbTiO3[J]. Phys Rev B Condens Matter, 2002, 66(5): 054104.

    [18] [18] WANG R X, ZHANG J, ZHENG L M, et al. Evolution of polar nano-regions under electric field around ferro-paraelectric transition temperature and its contribution to piezoelectric property in Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 crystal[J]. Ceram Int, 2018, 44(15): 18084–18089.

    [19] [19] FU H, COHEN R E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J]. Nature, 2000, 403(6767): 281–283.

    [20] [20] THEISSMANN R, SCHMITT L A, KLING J, et al. Nanodomains in morphotropic lead zirconate titanate ceramics: On the origin of the strong piezoelectric effect[J]. J Appl Phys, 2007, 102(2): 024111.

    [21] [21] DAMJANOVIC D. A morphotropic phase boundary system based on polarization rotation and polarization extension[J]. Appl Phys Lett, 2010, 97(6): 062906.

    [22] [22] LI F, ZHANG S J, XU Z, et al. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 crystals[J]. J Appl Phys, 2010, 108(3): 034106.

    [23] [23] KELLY J, LEONARD M, TANTIGATE C, et al. Effect of composition on the electromechanical properties of (1–x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 ceramics[J]. J Am Ceram Soc, 1997, 80(4): 957–964.

    [24] [24] TAKENAKA H, GRINBERG I, LIU S, et al. Slush–like polar structures in single-crystal relaxors[J]. Nature, 2017, 546(7658): 391–395

    [25] [25] PATTNAIK R, TOULOUSE J. New dielectric resonances in mesoscopic ferroelectrics[J]. Phys Rev Lett, 1997, 79(23): 4677–4680.

    [26] [26] CHAE M C, KIM N K. Perovskite formation by B-site precursor method and dielectric characteristics of Pb[Mg1/3(Ta, Nb)2/3]O3 ceramic system[J]. Ferroelectrics, 1998, 209(1): 603–613.

    Tools

    Get Citation

    Copy Citation Text

    YUAN Huan, LING Zhiyuan. Effect of Sm Doping on Temperature Stability of Field-Induced Strain in Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2900

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 23, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Zhiyuan LING (imzyling@scut.edu.cn.)

    DOI:10.14062/j.issn.0454-5648.20240059

    Topics