Acta Optica Sinica, Volume. 42, Issue 9, 0901002(2022)

Turbulence Models and Daily Variations Obtained by Bidirectional Atmospheric Coherent Length Measurements

Chenxiang Qiu1,2,3, Zaihong Hou1,3, Xu Jing1,3、*, Feng He1,3, and Silong Zhang1,3
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, Anhui, China
  • 3Anhui Laboratory of Advanced Laser Technology, Hefei 230037, Anhui, China
  • show less
    References(27)

    [1] Wang Y J, Fan C Y, Wei H L[M]. Laser beam propagation and applications through the atmosphere and sea water(2015).

    [2] Jing X, Wu Y, Hou Z H et al. Study of irradiance fluctuations for laser beam propagation in atmosphere[J]. Acta Optica Sinica, 30, 3110-3116(2010).

    [3] Wu L, Ying J J, Geng B. Effect on laser propagation in the atmospheric turbulence[J]. Laser & Infrared, 38, 974-977(2008).

    [4] Rao R Z[M]. Morden atmospheric optics(2012).

    [5] Tatarskii V I. Wave propagation in turbulent medium[M]. New York: McGraw-Hill(1961).

    [6] Zhang L J, Li D M, Yang J H[M]. Image restoration of atmospheric turbulence degradation based on adaptive optics(2017).

    [7] Xie M T, Li J H, Xu Z Y et al. Performance analysis for modulating retro-reflector FSO communications in weak turbulent atmosphere on slant path[J]. Acta Optica Sinica, 41, 1801002(2021).

    [8] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [9] Chen M N, Jin X Q, Li S B et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 19, 110601(2021).

    [10] Zhao Y G, Dong B, Liu M et al. Deep learning based computational ghost imaging alleviating the effects of atmospheric turbulence[J]. Acta Optica Sinica, 41, 1111001(2021).

    [11] Wu X Q, Zhu X T, Huang H H et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory[J]. Acta Optica Sinica, 32, 0701004(2012).

    [12] Ma X S, Zhu W Y, Rao R Z. Comparison of refractive index structure constants of atmospheric turbulence deduced from scintillation and beam wander effects[J]. High Power Laser and Particle Beams, 19, 538-542(2007).

    [13] Moulsley T J, Asimakopoulos D N, Cole R S et al. Measurement of boundary layer structure parameter profiles by acoustic sounding and comparison with direct measurements[J]. Quarterly Journal of the Royal Meteorological Society, 107, 203-230(2007).

    [14] Vernin J, Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation evidence for a multilayer structure of the air turbulence in the upper troposphere[J]. Journal of the Optical Society of America, 63, 270-273(1973).

    [15] Tokovinin A, Baumont S, Vasquez J. Statistics of turbulence profile at Cerro Tololo[J]. Monthly Notices of the Royal Astronomical Society, 340, 52-58(2003).

    [16] Hickson P, Lanzetta K. Measuring atmospheric turbulence with a lunar scintillometer array[J]. Publications of the Astronomical Society of the Pacific, 116, 1143-1152(2004).

    [17] Jing X, Hou Z H, Qin L A et al. Measurement of whole layer atmospheric coherence length by observing stars in daytime[J]. Infrared and Laser Engineering, 40, 1352-1355(2011).

    [18] Jing X, Hou Z H, Wu Y et al. Development of a differential column image motion light detection and ranging for measuring turbulence profiles[J]. Optics Letters, 38, 3445-3447(2013).

    [19] Hufnagel R E, Stanley N R. Modulation transfer function associated with image transmission through turbulent media[J]. Journal of the Optical Society of America, 54, 52-61(1964).

    [20] Weng N Q, Zeng Z Y, Xiao L M et al. Profile and characteristic of refractive index structure constant[J]. High Power Laser & Particle Beams, 11, 673-676(1999).

    [21] Sun G, Weng N Q, Xiao L M et al. Profile and character of atmospheric structure constants of refractive index[J]. High Power Laser & Particle Beams, 17, 485-490(2005).

    [22] Sun G, Weng N Q, Xiao L M et al. Vertical distribution characteristics and models of atmospheric turbulence in representative area[J]. Journal of Atmospheric and Environmental Optics, 13, 425-435(2018).

    [23] Fried D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. Journal of the Optical Society of America, 56, 1372-1379(1966).

    [24] Gimmestad G, Roberts D, Stewart J et al. Development of a lidar technique for profiling optical turbulence. [C]∥Imaging and Applied Optics 2014, July 13-17, Seattle, Washington. Washington, D.C.: OSA, JTu2C, 1(2014).

    [25] Sarazin M, Roddier F. The ESO differential image motion monitor[J]. Astronomy and Astrophysics, 227, 294-300(1990).

    [26] Sun G, Weng N Q, Xiao L M. Vertical distribution models of atmospheric structure constant of refractive index[J]. High Power Laser and Particle Beams, 20, 183-188(2008).

    [27] Luo X, Li X Y. Investigation on atmospheric optical turbulence profile statistical mode by stochastic parallel gradient descent algorithm[J]. Acta Optica Sinica, 32, 0901003(2012).

    Tools

    Get Citation

    Copy Citation Text

    Chenxiang Qiu, Zaihong Hou, Xu Jing, Feng He, Silong Zhang. Turbulence Models and Daily Variations Obtained by Bidirectional Atmospheric Coherent Length Measurements[J]. Acta Optica Sinica, 2022, 42(9): 0901002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Nov. 3, 2021

    Accepted: Dec. 23, 2021

    Published Online: May. 21, 2022

    The Author Email: Jing Xu (xujing@aiofm.ac.cn)

    DOI:10.3788/AOS202242.0901002

    Topics