Acta Optica Sinica, Volume. 42, Issue 13, 1323002(2022)

Modeling and Experimental Investigation of Erbium-Doped Lithium Niobate on Insulator Amplifiers

Junmin Xiang, Minglu Cai, Kan Wu*, Guangjin Zhang, and Jianping Chen
Author Affiliations
  • State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(27)

    [1] Sobon G, Kaczmarek P, Antonczak A et al. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers[J]. Optics Express, 19, 19104-19113(2011).

    [2] Htein L, Fan W W, Watekar P R et al. Amplification by white light-emitting diode pumping of large-core Er-doped fiber with 12 dB gain[J]. Optics Letters, 37, 4853-4855(2012).

    [3] Tu H, Xi L X, Zhang X G et al. Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier[J]. Photonics Research, 1, 88-91(2013).

    [4] le Gouët J, Oudin J, Perrault P et al. On the effect of low temperatures on the maximum output power of a coherent erbium-doped fiber amplifier[J]. Journal of Lightwave Technology, 37, 3611-3619(2019).

    [5] Yu W L, Yan P, Xiao Q R et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics, 60, 2046-2055(2021).

    [6] Yan Y C, Faber A J, de Waal H et al. Net optical gain at 1.53 μm in an Er-doped phosphate glass waveguide on silicon[C], FAW8(1997).

    [7] Frankis H C, Mbonde H M, Bonneville D B et al. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain[J]. Photonics Research, 8, 127-134(2020).

    [8] Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers[J]. Laser & Photonics Reviews, 5, 368-403(2011).

    [9] Vázquez-Córdova S A, Dijkstra M, Bernhardi E H et al. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon[J]. Optics Express, 22, 25993-26004(2014).

    [10] Salas-Montiel R, Solmaz M E, Eknoyan O et al. Er-doped optical waveguide amplifiers in X-cut lithium niobate by selective codiffusion[J]. IEEE Photonics Technology Letters, 22, 362-364(2010).

    [11] Jiang X D, Pak D, Nandi A et al. Rare earth-implanted lithium niobate: properties and on-chip integration[J]. Applied Physics Letters, 115, 071104(2019).

    [12] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).

    [13] Xiao Z Y, Wu K, Cai M L et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator[J]. Optics Letters, 46, 4128-4131(2021).

    [14] Cai L T, Mahmoud A, Khan M et al. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 7, 1003-1013(2019).

    [15] Zhou J X, Liang Y T, Liu Z X et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator[J]. Laser & Photonics Reviews, 15, 2100030(2021).

    [16] Chen Z X, Xu Q, Zhang K et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers[J]. Optics Letters, 46, 1161-1164(2021).

    [17] Luo Q, Yang C, Hao Z Z et al. On-chip erbium-doped lithium niobate waveguide amplifiers[J]. Chinese Optics Letters, 19, 060008(2021).

    [19] Zhang D L, Sun W B, Wong W H et al. Emission and absorption cross sections of Er3+∶LiNbO3 crystal: composition effect[J]. Optical Materials Express, 5, 1920-1926(2015).

    [20] Ohtsuki T, Honkanen S, Najafi S I et al. Cooperative upconversion effects on the performance of Er3+-doped phosphate glass waveguide amplifiers[J]. Journal of the Optical Society of America B, 14, 1838-1845(1997).

    [21] Lü J M, Hao X T, Chen F. Green up-conversion and near-infrared luminescence of femtosecond-laser-written waveguides in Er3+, MgO co-doped nearly stoichiometric LiNbO3 crystal[J]. Optics Express, 24, 25482-25490(2016).

    [22] Huang C H, McCaughan L. 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 367-372(1996).

    [23] Lazaro J A, Valles J A, Rebolledo M A. In situ measurement of absorption and emission cross sections in Er3+-doped waveguides for transitions involving thermalized states[J]. IEEE Journal of Quantum Electronics, 35, 827-831(1999).

    [24] Agazzi L, Wörhoff K, Kahn A et al. Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide[J]. Journal of the Optical Society of America B, 30, 663-677(2013).

    [25] Veasey D L, Gary J M, Amin J et al. Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm[J]. IEEE Journal of Quantum Electronics, 33, 1647-1662(1997).

    [26] Cai M L, Wu K, Xiang J M et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200608(2022).

    [27] McCumber D E. Einstein relations connecting broadband emission and absorption spectra[J]. Physical Review, 136, A954-A957(1964).

    Tools

    Get Citation

    Copy Citation Text

    Junmin Xiang, Minglu Cai, Kan Wu, Guangjin Zhang, Jianping Chen. Modeling and Experimental Investigation of Erbium-Doped Lithium Niobate on Insulator Amplifiers[J]. Acta Optica Sinica, 2022, 42(13): 1323002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Dec. 15, 2021

    Accepted: Jan. 18, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Wu Kan (kanwu@sjtu.edu.cn)

    DOI:10.3788/AOS202242.1323002

    Topics