Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 2(2022)
Synthesis and Sodium Storage Performance of Highly Stable Vanadium Sulfide Microsphere Anodes
[1] [1] ZHANG X, ZHOU Y, LUO B, et al. Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries[J]. Nano-Micro Lett, 2018, 10(1): 13.
[2] [2] NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew Chem In Ed, 2018, 57(1): 102-120.
[3] [3] LAN D, WANG W, LI Q. Cu4SnP10 as a promising anode material for sodium ion batteries[J]. Nano Energy, 2017, 39: 506-512.
[4] [4] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23): 11636-11682.
[5] [5] WANG L P, YU L, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. J Mater Chem A, 2015, 3(18): 9353-9378.
[7] [7] RAJAGOPALAN R, TANG Y, JIA C, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions[J]. Energy Environ Sci, 2020, 13(6): 1568-1592.
[8] [8] ZHAO W, GUO C, LI C. Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life[J]. J Mater Chem A, 2017, 5(36): 19195-19202.
[9] [9] CHEN D, LUO K, YANG Z, et al. Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage[J]. Carbon, 2021, 173: 253-261.
[10] [10] HAN H, CHEN X, QIAN J, et al. Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries[J]. Nanoscale, 2019, 11(45): 21999-22005.
[11] [11] SAROJA A P V K, MURUGANATHAN M, MUTHUSAMY K, et al. Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes[J]. Nano Lett, 2018, 18(9): 5688-5696.
[12] [12] YANG J, LI J, WANG T, et al. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries[J]. Chem Eng J, 2021, 407: 127169.
[13] [13] MA W, YIN K, GAO H, et al. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries[J]. Nano Energy, 2018, 54: 349-359.
[14] [14] WU F, JIANG Y, YE Z, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries[J]. J Mater Chem A, 2019, 7(3): 1315-1322.
[15] [15] ZHENG C, XU X, LIN Q, et al. Confined growth of Fe2O3 nanoparticles by holey graphene for enhanced sodium-ion storage[J]. Carbon, 2021, 176: 31-38.
[16] [16] GENG X, JIAO Y, HAN Y, et al. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries[J]. Adv Funct Mater, 2017, 27(40): 1702998.
[17] [17] YU D, PANG Q, GAO Y, et al. Hierarchical flower-like VS2 nanosheets-A high rate-capacity and stable anode material for sodium-ion battery[J]. Energy Storage Mater, 2018, 11: 1-7.
[18] [18] ALLMANN R, BAUMANN I, KUTOGLU A, et al. Die kristallstmk/ur des patronits V(S2)2[J]. Naturwissenschaften, 1964, 51(11): 263-264.
[19] [19] SUN R, WEI Q, LI Q, et al. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery[J]. ACS Appl Mater Interfaces, 2015, 7(37): 20902-20908.
[20] [20] LI S, HE W, DENG P, et al. Ultra-long cycle life of sodium-ion batteries in VS4-G nanocomposite structure[J]. Mater Lett, 2017, 205: 52-55.
[21] [21] YANG F, ZHONG W, WANG H, et al. Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries[J]. J Alloys Compd, 2020, 834: 155204.
[22] [22] LIU Y, XU Q, WANG R, et al. Design and synthesis of a reduced graphene oxide/patronite composite with enhanced lithium-ion storage performance[J]. ACS Appl Mater Interfaces, 2020, 12(5): 5775-5785.
[23] [23] LI W, HUANG J, LI R, et al. Enhanced kinetics over VS4 microspheres with multidimensional Na+ transfer channels for high-rate sodium-ion battery anode[J]. ChemSusChem, 2019, 12(23): 5183-5191.
[24] [24] WANG S, GONG F, YANG S, et al. Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries[J]. Adv Funct Mater, 2018, 28(34): 1801806.
[25] [25] DING S, ZHOU B, CHEN C, et al. Three-dimensional self-assembled hairball-like VS4 as high-capacity anodes for sodium-ion batteries[J]. Nano-Micro Lett, 2020, 12(1): 39.
[26] [26] HU Z, WANG L, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angew Chem In Ed, 2014, 53(47): 12794-12798.
[27] [27] ZHAI Y, MA X, MAO H, et al. Mn-doped alpha-FeOOH nanorods and alpha-Fe2O3 mesoporous nanorods: Facile synthesis and applications as high performance anodes for LIBs[J]. Adv Electron Mater, 2015, 1(6): 1400057.
[28] [28] XU X, JI S, GU M, et al. In situ synthesis of MnS hollow microspheres on reduced graphene oxide sheets as high-capacity and long-life anodes for Li-and Na-ion batteries[J]. ACS Appl Mater Interfaces, 2015, 7(37): 20957-20964.
[29] [29] LI C, WANG B, CHEN D, et al. Topotactic transformation synthesis of 2D ultrathin GeS2 nanosheets toward high-rate and high-energy-density sodium-ion half/full batteries[J]. ACS Nano, 2020, 14(1): 531-540.
[30] [30] PARK J Y, KIM S J, YIM K, et al. Pulverization-tolerance and capacity recovery of copper sulfide for high-performance sodium storage[J]. Adv Sci, 2019, 6(12): 1900264.
[31] [31] ZHANG K, HU Z, LIU X, et al. FeSe2 microspheres as a high-performance anode material for Na-ion batteries[J]. Adv Mater, 2015, 27(21): 3305-3309.
[32] [32] LI W, HUANG J, CAO L, et al. Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries[J]. Electrochim Acta, 2018, 274: 334-342.
[33] [33] YU Y, SHEN L, WANG Y, et al. Hierarchical metal sulfide/carbon spheres: A Generalized synthesis and high sodium storage performance[J]. Angew Chem In Ed, 2019, 58(22): 7238-7243.
[34] [34] LI W, HUANG J, FENG L, et al. Facile in situ synthesis of crystalline VOOH-coated VS2 microflowers with superior sodium storage performance[J]. J Mater Chem A, 2017, 5(38): 20217-20227.
[35] [35] YANG C, OU X, XIONG X, et al. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries[J]. Energy Environ Sci, 2017, 10(1): 107-113.
Get Citation
Copy Citation Text
CHENG Siling, LUO Wei, ZHENG Kunxiong, RUI Xianhong. Synthesis and Sodium Storage Performance of Highly Stable Vanadium Sulfide Microsphere Anodes[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 2
Special Issue:
Received: Aug. 2, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: Siling CHENG (Siling_Cheng0619@163.com)