Laser & Optoelectronics Progress, Volume. 60, Issue 8, 0811015(2023)

Three-Dimensional Measurement System of Fringe-Structured Light Based on High-Speed LED Array

Xiehui Geng1, Jingming Song1, Lei Zhang2, Chao Zuo3, and Mingjie Sun1、*
Author Affiliations
  • 1School of Instrument Science and Optoelectronic Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • 2The Eleventh Research Institute of China Electronics Technology Group, Beijing 100015, China
  • 3School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu , China
  • show less
    References(51)

    [1] Zhang S. High-speed 3D shape measurement with structured light methods: a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018).

    [2] Fujigaki M, Oura Y, Asai D et al. High-speed height measurement by a light-source-stepping method using a linear LED array[J]. Optics Express, 21, 23169-23180(2013).

    [3] Tiwari V, Sutton M A, McNeill S R. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation[J]. Experimental Mechanics, 47, 561-579(2007).

    [4] Malamas E N, Petrakis E G M, Zervakis M et al. A survey on industrial vision systems, applications and tools[J]. Image and Vision Computing, 21, 171-188(2003).

    [5] Chao Z, Xiaolei Z, Yan H et al. Has 3D finally come of age? An introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 49, 0303001(2020).

    [6] Huang P S, Zhang C P, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 42, 163-168(2003).

    [7] Huang P S, Zhang S. Fast three-step phase-shifting algorithm[J]. Applied Optics, 45, 5086-5091(2006).

    [8] Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 34, 3080-3082(2009).

    [9] Zhang S, van der Weide D, Oliver J. Superfast phaseshifting method for 3-D shape measurement[J]. Optics Express, 18, 9684-9689(2010).

    [10] Lei S, Zhang S. Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns[J]. Optics and Lasers in Engineering, 48, 561-569(2010).

    [11] Ayubi G A, Ayubi J A, Di Martino J M et al. Pulse-width modulation in defocused three-dimensional fringe projection[J]. Optics Letters, 35, 3682-3684(2010).

    [12] Zuo C, Chen Q, Feng S J et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing[J]. Applied Optics, 51, 4477-4490(2012).

    [13] Wang Y J, Zhang S. Superfast multifrequency phase-shifting technique with optimal pulse width modulation[J]. Optics Express, 19, 5149-5155(2011).

    [14] Zuo C, Chen Q, Gu G et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection[J]. Optics and Lasers in Engineering, 51, 953-960(2013).

    [15] Lohry W, Zhang S. Genetic method to optimize binary dithering technique for high-quality fringe generation[J]. Optics Letters, 38, 540-542(2013).

    [16] Dai J F, Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement[J]. Optics and Lasers in Engineering, 51, 790-795(2013).

    [17] Dai J F, Li B W, Zhang S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity[J]. Optics and Lasers in Engineering, 52, 195-200(2014).

    [18] Sun J, Zuo C, Feng S et al. Improved intensity-optimized dithering technique for 3D shape measurement[J]. Optics and Lasers in Engineering, 66, 158-164(2015).

    [19] Dai J F, Zhang S. Intensity-optimized dithering technique for three-dimensional shape measurement with projector defocusing[J]. Optics and Lasers in Engineering, 53, 79-85(2014).

    [20] Wang Y J, Zhang S. Three-dimensional shape measurement with binary dithered patterns[J]. Applied Optics, 51, 6631-6636(2012).

    [21] Hyun J S, Zhang S. Superfast 3D absolute shape measurement using five binary patterns[J]. Optics and Lasers in Engineering, 90, 217-224(2017).

    [22] Wang Y J, Laughner J I, Efimov I R et al. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique[J]. Optics Express, 21, 5822-5832(2013).

    [23] Gong Y Z, Zhang S. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector[J]. Optics Express, 18, 19743-19754(2010).

    [24] Zuo C, Tao T, Feng S et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second[J]. Optics and Lasers in Engineering, 102, 70-91(2018).

    [25] Sun M J, Huang J Y, Penuelas J. Suppressing the noise in binarized Fourier single-pixel imaging utilizing defocus blur[J]. Optics and Lasers in Engineering, 108, 15-18(2018).

    [26] Cong P Y, Xiong Z W, Zhang Y Y et al. Accurate dynamic 3D sensing with Fourier-assisted phase shifting[J]. IEEE Journal of Selected Topics in Signal Processing, 9, 396-408(2015).

    [27] Lu L, Xi J T, Yu Y G et al. Improving the accuracy performance of phase-shifting profilometry for the measurement of objects in motion[J]. Optics Letters, 39, 6715-6718(2014).

    [28] Feng S, Zuo C, Tao T et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry[J]. Optics and Lasers in Engineering, 103, 127-138(2018).

    [29] Qian J M, Tao T Y, Feng S J et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry[J]. Optics Express, 27, 2713-2731(2019).

    [30] Li B W, Zhang S. Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process[J]. Optics Express, 25, 27270-27282(2017).

    [31] Feng S J, Chen Q, Gu G H et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics, 1, 025001(2019).

    [32] Feng S J, Zuo C, Yin W et al. Micro deep learning profilometry for high-speed 3D surface imaging[J]. Optics and Lasers in Engineering, 121, 416-427(2019).

    [33] Surrel Y. Design of algorithms for phase measurements by the use of phase stepping[J]. Applied Optics, 35, 51-60(1996).

    [34] Ghiglia D C, Pritt M D[M]. Two-dimensional phase unwrapping: theory, algorithms, and software(1998).

    [35] Herráez M A, Burton D R, Lalor M J et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 41, 7437-7444(2002).

    [36] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 23, 713-720(1988).

    [37] Su X Y, Chen W J. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 42, 245-261(2004).

    [38] Zhao M, Huang L, Zhang Q C et al. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies[J]. Applied Optics, 50, 6214-6224(2011).

    [39] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 32, 3047-3052(1993).

    [40] Zuo C, Huang L, Zhang M et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 85, 84-103(2016).

    [41] Weise T, Leibe B, van Gool L. Fast 3D scanning with automatic motion compensation[C](2007).

    [42] Li Z W, Zhong K, Li Y F et al. Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects[J]. Optics Letters, 38, 1389-1391(2013).

    [43] Young M, Beeson E, Davis J et al. Viewpoint-coded structured light[C](2007).

    [44] Bräuer-Burchardt C, Munkelt C, Heinze M et al. Using geometric constraints to solve the point correspondence problem in fringe projection based 3D measuring systems[M]. Maino G, Foresti G L. Image analysis and processing-ICIAP 2011, 6979, 265-274(2011).

    [45] Guan Y J, Yin Y K, Li A M et al. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry[J]. Optics Letters, 39, 3678-3681(2014).

    [46] Lohry W, Chen V, Zhang S. Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration[J]. Optics Express, 22, 1287-1301(2014).

    [47] Zhong K, Li Z, Shi Y et al. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 51, 1213-1222(2013).

    [48] Gai S Y, Da F P, Dai X Q. Novel 3D measurement system based on speckle and fringe pattern projection[J]. Optics Express, 24, 17686-17697(2016).

    [49] Tao T Y, Chen Q, Da J et al. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system[J]. Optics Express, 24, 20253-20269(2016).

    [50] Feng S J, Zuo C, Zhang L et al. Calibration of fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 143, 106622(2021).

    [51] Wu Z J, Guo W B, Li Y Y et al. High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light[J]. Photonics Research, 8, 819-829(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xiehui Geng, Jingming Song, Lei Zhang, Chao Zuo, Mingjie Sun. Three-Dimensional Measurement System of Fringe-Structured Light Based on High-Speed LED Array[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Dec. 27, 2022

    Accepted: Feb. 6, 2023

    Published Online: May. 8, 2023

    The Author Email: Sun Mingjie (mingjie.sun@buaa.edu.cn)

    DOI:10.3788/LOP223404

    Topics