Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3134(2022)

Preparation and Afterglow Mechanoluminescent Property of ZrO2:Ti4+/PDMS Composite Elastic Material

GU Yan*, LIN Pincheng, ZHANG Junkai, YAO Kaiwen, WANG Wenxiang, WANG Mingyu, and ZHANG Jiachi
Author Affiliations
  • [in Chinese]
  • show less
    References(44)

    [1] [1] ZHUANG Y X, XIE R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review[J]. Adv Mater, 2021, 33(50):2005925.

    [2] [2] JEONG S M, SONG S, LEE S K, et al. Color manipulation of mechanoluminescence from stress-activated composite films[J]. Adv Mater, 2013, 25(43): 6194-6200.

    [3] [3] BACON F. The advancement of learning[M]. Macmillan & Company,Limited, 1910.

    [4] [4] BOYLE R. Experiments and considerations touching colours(1664)[M]. Quality Classics, 2010.

    [5] [5] FENG A, SMET P F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications[J]. Materials,2018, 11(4): 484.

    [6] [6] XU C N, WATANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission[J]. Appl Phys Lett, 1999,74(9): 1236-1238.

    [7] [7] XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence[J]. Appl Phys Lett, 1999,74(17): 2414-2416.

    [8] [8] XU C N, WATANABE T, AKIYAMA M, et al. Development of strongly adherent triboluminescent zinc sulfide films on glass substrates by ion plating and annealing[J]. J Am Ceram Soc, 1999,82(9): 2342-2344.

    [9] [9] WANG W, WANG Z, ZHANG J, et al. Contact electrification induced mechanoluminescence[J]. Nano Energy, 2022, 94: 106920.

    [10] [10] BAI Y, WANG F, ZHANG L, et al. Interfacial triboelectrificationmodulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds[J]. Nano Energy, 2022, 96: 107075.

    [11] [11] ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping[J]. Chem Mater. 2016, 28(11): 4052-4057.

    [12] [12] WANG X, XU C N, YAMADA H, et al. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics[J]. Adv Mater,2005, 17(10): 1254-1258.

    [13] [13] TU D, XU C N, YOSHIDA A, et al. LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence[J]. Adv Mater, 2017, 29(22): 1606914.

    [14] [14] ZHANG J C, PAN C, ZHU Y F, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting[J]. Adv Mater, 2018, 30(49):1804644.

    [15] [15] BOTTERMAN J, VAN DEN EECKHOUT K, DE BAERE I, et al.Mechanoluminescence in BaSi2O2N2:Eu[J]. Acta Mater, 2012, 60(15):5494-5500.

    [16] [16] ZHANG L, YAMADA H, IMAI Y, et al. Observation of elasticoluminescence from CaAl2Si2O8:Eu2+ and its water resistance behavior[J]. J Electrochem Soc, 2007, 155(3): J63.

    [17] [17] ZHANG H, YAMADA H, TERASAKI N, et al. Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu, Dy[J].J Electrochem Soc, 2007, 155(2): J55.

    [18] [18] ZHANG H, PENG D, WANG W, et al. Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing[J]. J Phys Chem C, 2015, 119(50):28136-28142.

    [19] [19] LI L, WONDRACZEK L, PENG M, et al. Force-induced 1 540 nm luminescence: role of piezotronic effect in energy transfer process for mechanoluminescence[J]. Nano Energy, 2020, 69: 104413.

    [20] [20] CHEN C, ZHUANG Y, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 2020, 68: 104329.

    [21] [21] LI L, WONDRACZEK L, LI L, et al. CaZnOS:Nd3+ emits tissue-penetrating near-infrared light upon force loading[J]. ACS Appl Mater Interfaces, 2018, 10(17): 14509-14516.

    [22] [22] DU Y, JIANG Y, SUN T, et al. Mechanically excited multicolor luminescence in lanthanide ions[J]. Adv Mater, 2019, 31(7): 1807062.

    [23] [23] ZHOU Y, YANG Y L, FAN Y T, et al. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure[J]. J Mater Chem C, 2019, 7(26): 8070-8078.

    [24] [24] CHEN H, BAI Y, ZHENG L, et al. Interstitial oxygen defect induced mechanoluminescence in KCa(PO3)3:Mn2+[J]. J Mater Chem C, 2020,8(19): 6587-6594.

    [27] [27] ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging[J]. Acta Mater, 2018, 152: 148-154.

    [28] [28] NING J, ZHENG Y, REN Y, et al. MgF2:Mn2+: novel material with mechanically-induced luminescence[J]. Sci Bull, 2022, 67(7):707-715.

    [29] [29] MA Z, ZHOU J, ZHANG J, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Mater Horiz, 2019, 6(10): 2003-2008.

    [30] [30] ZHOU J, GU Y, LU J, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer[J]. Chem Eng J, 2020,390: 124473.

    [31] [31] WANG X, ZHANG H, YU R, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Adv Mater, 2015, 27(14):2324-2331.

    [32] [32] QIAN X, CAI Z, SU M, et al. Printable Skin-driven mechanoluminescence devices via nanodoped matrix modification[J].Adv Mater, 2018, 30(25): 1800291.

    [33] [33] FU X, YAMADA H, XU C N. Property of highly oriented SrAl2O4:Eu film on quartz glass substrates and its potential application in stress sensor[J]. J Electrochem Soc, 2009, 156(9): J249.

    [34] [34] HAO J, XU C N. Piezophotonics: From fundamentals and materials to applications[J]. MRS Bull, 2018, 43(12): 965-969.

    [37] [37] WANG Z, Zhang J, Zheng G, et al. The unusual variations of photoluminescence and afterglow properties in monoclinic ZrO2 by annealing[J]. J Lumin, 2012, 132(11): 2817-2821.

    [38] [38] WANG W, SUN Z, HE X, et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4:Bi3+, Eu3+ phosphor[J]. J Mater Chem C,2017, 5(17): 4310-4318.

    [42] [42] MA J, LI Y, HU W, et al. A terbium activated multicolour photoluminescent phosphor for luminescent anticounterfeiting[J]. J Rare Earths, 2020, 38(10): 1039-1043.

    [43] [43] LIN F, ZHENBIN W, CHENG C, et al. Warm-white persistent luminescence of Lu3Al2Ga3O12:Pr3+ phosphor[J]. J Rare Earths, 2017,35(1): 47-52.

    [46] [46] FAN Y, JIN X, WANG M, et al. Multimode dynamic photoluminescent anticounterfeiting and encryption based on a dynamic photoluminescent material[J]. Chem Eng J, 2020, 393:124799.

    [47] [47] WANG N, PU M, MA Z, et al. Control of triboelectricity by mechanoluminescence in ZnS/Mn-containing polymer films[J]. Nano Energy, 2021, 90: 106646.

    Tools

    Get Citation

    Copy Citation Text

    GU Yan, LIN Pincheng, ZHANG Junkai, YAO Kaiwen, WANG Wenxiang, WANG Mingyu, ZHANG Jiachi. Preparation and Afterglow Mechanoluminescent Property of ZrO2:Ti4+/PDMS Composite Elastic Material[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3134

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jun. 23, 2022

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email: Yan GU (guy21@lzu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220507

    Topics