Chinese Journal of Lasers, Volume. 51, Issue 16, 1602308(2024)

Microstructure and Strength-Toughness of FSP-Assisted Laser Deposited AlSi10Mg Alloy

Haisheng Zhao1,2, Feng Zhang2, Chengchao Du3、*, Xudong Ren3, Xiangyu Wei2, and Junjie Gao2
Author Affiliations
  • 1AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • 2HFYC (Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, Jiangsu , China
  • 3School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • show less
    References(33)

    [1] Yin X C, Liu J R, Wang Q J et al. Microstructure and tensile properties of TC17/TC11 dual alloy fabricated with laser melting deposition method[J]. Rare Metal Materials and Engineering, 49, 1024-1030(2020).

    [2] Su C C, Chen X Z, Konovalov S et al. Direct laser deposited CoCrFeNiMn high-entropy alloys: relationship between pores-microstructure-tensile properties[J]. Journal of Materials Engineering, 50, 43-49(2022).

    [3] Wang S Y, Cui L, Liu G et al. Effects of laser powers on the microstructure and wear resistance of molybdenum coatings prepared by supersonic laser deposition[J]. Surface and Coatings Technology, 453, 129142(2023).

    [4] Wu Y, Liu Y, Chen W J et al. Research status and development direction of ultra-high speed laser cladding technology[J]. Electric Welding Machine, 50, 1-10, 140(2020).

    [5] Zhao J G, Hou J, Xiong X J. Study on the properties of 304L stainless steel joint for nuclear use by composite manufacturing of additive and subtractive materials based on laser direct deposition technology[J]. Electric Welding Machine, 50, 39-45, 148(2020).

    [6] Jin C Y, Ge H H, Zhang Y Z et al. Distribution mechanism of Cr element in laser cladding layer during 316L powder multilayer stacking[J]. Chinese Journal of Lasers, 50, 1202205(2023).

    [8] Li Z H, Chai L J, Tang Y et al. 316L stainless steel repaired layers by weld surfacing and laser cladding on a 27SiMn steel: a comparative study of microstructures, corrosion, hardness and wear performances[J]. Journal of Materials Research and Technology, 23, 2043-2053(2023).

    [9] Zhang B, He B, Wang H M. Microstructural investigation and mechanical performance of laser cladding repaired bainite steel with AerMet100 steel[J]. Surface and Coatings Technology, 440, 128498(2022).

    [10] Liu J Q, Guo X, Zhang X et al. Experimental and simulation study on laser cladding repair of hob coating of tunnel boring machine[J]. Journal of Tianjin University (Science and Technology), 56, 103-110(2023).

    [11] Li B H, Guo S Q, Zhou B et al. Establishment and verification of thermo-mechanical coupled model for laser direct deposition of titanium alloy[J]. Laser & Optoelectronics Progress, 59, 1114007(2022).

    [12] Zhe J, Zhu H B, Qiu Y et al. Study on the microstructure and mechanical properties of 7B05 aluminum alloy repaired via laser additive with Al-Mg-Sc-Zr aluminum alloy powder[J]. Modern Urban Transit, 87-93(2022).

    [13] Wang X Y, Chen J, Lin X et al. Microstructures of laser forming repair 7050 aluminum alloy with AlSi12 powder[J]. Chinese Journal of Lasers, 36, 1585-1590(2009).

    [14] Liu X L. Study on forming process and properties of YSZ/7075 aluminum alloy by laser selective melting[D](2021).

    [15] Li Y. Effect of alloying elements on microstructure and hot cracking sensitivity of semi-continuous casting 7××× aluminum alloy[D](2019).

    [16] Xia F B. Study on microstructure and properties of laser welded joint of 7000 series aluminum alloy for automobile[D](2013).

    [17] Xu R, Wang W J, Zhu H B et al. Microstructure and properties of repaired 5083-H112 aluminum alloy by laser direct energy deposited Al-Mg-Sc-Zr[J]. Journal of Materials Engineering, 52, 40-49(2024).

    [18] Zhang J X, Liu J Y, Li H et al. Study on forming and heat treatment parameters of AlSi10Mg alloy with large thickness by selective laser melting[J]. Journal of Chongqing Jiaotong University (Natural Science), 41, 149-156(2022).

    [19] Ding Y, Yang H O, Bai J et al. Microstructure and mechanical property of AlSi10Mg alloy prepared by laser solid forming[J]. China Surface Engineering, 31, 46-54(2018).

    [20] Yan T Q, Chen B Q, Tang P J et al. Effect of layer thickness on forming quality and efficiency of AlSi10Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002106(2021).

    [21] Tridello A, Fiocchi J, Biffi C A et al. Size-effects affecting the fatigue response up to 109 cycles (VHCF) of SLM AlSi10Mg specimens produced in horizontal and vertical directions[J]. International Journal of Fatigue, 160, 106825(2022).

    [22] Peng T. Study on microstructure and properties of friction stir processing and emergency stop of 7075 aluminum alloy[D](2013).

    [23] Jiang J Y, Jiang F, Zhang M H et al. Microstructure evolution and tensile property of deformed Al-Mg-Sc alloy: comparison of ECAP and FSP[J]. Journal of Materials Research and Technology, 22, 2612-2626(2023).

    [24] Ye B, Ding Q, Qin W et al. Superplastic study of AA5083 aluminum alloy processed by multi-pass friction stir technology[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 37, 502-505(2017).

    [25] Narimani M, Lotfi B, Sadeghian Z. Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by Friction Stir Processing (FSP)[J]. Materials Science and Engineering: A, 673, 436-442(2016).

    [26] Qiao Y P. Friction stir processing of in-situ Al3Zr particle reinforced aluminum matrix composites and its microstructure and properties[D](2022).

    [27] Sun H H, Zhu L Y, Wu X J et al. Study of microstructure and properties of cast 7075 aluminum alloy by friction stir processing[J]. Journal of Shenyang Ligong University, 38, 7-15(2019).

    [28] Yang T Y, Cui L, He D Y et al. Enhancement of microstructure and mechanical property of AlSi10Mg-Er-Zr alloys fabricated by selective laser melting[J]. Acta Metallurgica Sinica, 58, 1108-1117(2022).

    [29] Ao N, He Z A, Wu S C et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 43, 1-19, 113(2022).

    [30] Bosio F, Phutela C, Ghisi N et al. Tuning the microstructure and mechanical properties of AlSi10Mg alloy via in-situ heat-treatments in laser powder bed fusion[J]. Materials Science and Engineering: A, 879, 145268(2023).

    [31] Zhu S M, Katti I, Qiu D et al. Microstructural analysis of the influences of platform preheating and post-build heat treatment on mechanical properties of laser powder bed fusion manufactured AlSi10Mg alloy[J]. Materials Science and Engineering: A, 882, 145486(2023).

    [32] Eom Y S, Park J M, Choi J W et al. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity[J]. Journal of Alloys and Compounds, 956, 170348(2023).

    [33] Chen S Q, Tan Q Y, Gao W Q et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg[J]. Materials Science and Engineering: A, 858, 144130(2022).

    Tools

    Get Citation

    Copy Citation Text

    Haisheng Zhao, Feng Zhang, Chengchao Du, Xudong Ren, Xiangyu Wei, Junjie Gao. Microstructure and Strength-Toughness of FSP-Assisted Laser Deposited AlSi10Mg Alloy[J]. Chinese Journal of Lasers, 2024, 51(16): 1602308

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Jun. 30, 2023

    Accepted: Oct. 11, 2023

    Published Online: Apr. 17, 2024

    The Author Email: Du Chengchao (dccmaterials@ujs.edu.cn)

    DOI:10.3788/CJL230976

    Topics