Chinese Journal of Quantum Electronics, Volume. 31, Issue 5, 576(2014)
Anderson localization of Bose-condensed gas in disordered speckle potentials
[2] [2] Anderson P W. Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958, 109(5): 1492.
[3] [3] Billy J, Josse V, et al. Direct observation of Anderson localization of matter waves in a controlled disorder [J]. Nature, 2008, 453(7197): 891-894.
[4] [4] Roati G, D’Errico C, Fallani L, et al. Anderson localization of a non-interacting Bose-Einstein condensate [J]. Nature, 2008, 453(7197): 895-898.
[5] [5] Lugan P, Aspect A, Sanchez-Palencia L, et al. One-dimensional Anderson localization in certain correlated random potentials [J]. Phys. Rev. A, 2009, 80(2): 023605.
[6] [6] Cheng Y, Adhikari S K. Matter-wave localization in a random potential [J]. Phys. Rev. A, 2010, 82(1): 013631.
[7] [7] Piraud M, Aspect A, et al. Anderson localization of matter waves in tailored disordered potentials [J]. Phys. Rev. A, 2012, 85(6): 063611.
[8] [8] Adhikari S K, Salasnich L. Localization of a Bose-Einstein condensate in a bichromatic optical lattice [J]. Phys. Rev. A, 2009, 80(2): 023606.
[9] [9] Piraud M, Lugan P, Bouyer P, et al. Localization of a matter wave packet in a disordered potential [J]. Phys. Rev. A, 2011, 83(3): 031603.
[10] [10] Sucu S, Aktas S, Okan S E, et al. Anderson localization in optical lattices with speckle disorder [J]. Phys. Rev. A, 2011, 84(6): 065602.
[11] [11] Jendrzejewski F, Bernard A, Mueller K, et al. Three-dimensional localization of ultracold atoms in an optical disordered potential [J]. Nature Physics, 2012, 8(5): 398-403.
[12] [12] Jin S, Markowich P, et al. Mathematical and computational methods for semiclassical Schr dinger equations [J]. Acta Numerica, 2011, 20: 121-209.
[14] [14] Buitrago C A G, et al. Mean-field equations for cigar-shaped and disc-shaped Bose and Fermi superfluids [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42(21): 215306.
[15] [15] Muruganandam P, Adhikari S K. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap [J]. Computer Physics Communications, 2009, 180(10): 1888-1912.
[18] [18] Sanchez-Palencia L, Clement D. Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials [J]. New Journal of Physics, 2008, 10(4): 045019.
Get Citation
Copy Citation Text
CHEN Chuan-shu, XU Zhi-jun. Anderson localization of Bose-condensed gas in disordered speckle potentials[J]. Chinese Journal of Quantum Electronics, 2014, 31(5): 576
Category:
Received: Jan. 20, 2014
Accepted: --
Published Online: Oct. 23, 2014
The Author Email: Chuan-shu CHEN (ccsebox@sina.com)