Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 921(2023)

Research Progress on Dielectric Ceramics and Devices Within Data-Driven Paradigm

QIN Jincheng1...2,*, LIU Zhifu1,2, MA Mingsheng1,2 and LI Yongxiang1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(83)

    [1] [1] AGRAWAL A, CHOUDHARY A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Mater, 2016, 4(5): 053208.

    [3] [3] DERINGER V L, BERNSTEIN N, CSNYI G, et al. Origins of structural and electronic transitions in disordered silicon[J]. Nature, 2021, 589(7840): 59-64.

    [4] [4] BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876.

    [5] [5] RACCUGLIA P, ELBERT K C, ADLER P D F, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533(7601): 73-76.

    [6] [6] RAJAN K. Materials informatics: The materials “gene” and big data[J]. Annu Rev Mater Res, 2015, 45(1): 153-169.

    [7] [7] RICKMAN J M, LOOKMAN T, KALININ S V. Materials informatics: From the atomic-level to the continuum[J]. Acta Mater, 2019, 168: 473-510.

    [8] [8] SENDEROWITZ H, TROPSHA A. Materials informatics[J]. J Chem Inf Model, 2018, 58(7): 1313-1314.

    [9] [9] KIM C, PILANIA G, RAMPRASAD R. From organized high-throughput data to phenomenological theory using machine learning: The example of dielectric breakdown[J]. Chem Mater, 2016, 28(5): 1304-1311.

    [10] [10] YUAN R, XUE D, XU Y, et al. Machine learning combined with feature engineering to search for BaTiO3 based ceramics with large piezoelectric constant[J]. J Alloys Compd, 2022, 908: 164468.

    [11] [11] GONG J, CHU S, MEHTA R K, et al. XGBoost model for electrocaloric temperature change prediction in ceramics[J]. npj Comput Mater, 2022, 8(1): 140.

    [12] [12] HE J, LI J, LIU C, et al. Machine learning identified materials descriptors for ferroelectricity[J]. Acta Mater, 2021, 209: 116815.

    [14] [14] YANG H, ZHANG S, YANG H, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams[J]. J Adv Ceram, 2021, 10(5): 885-932.

    [15] [15] GRASSO S, BIESUZ M, ZOLI L, et al. A review of cold sintering processes[J]. Adv Appl Ceram, 2020, 119(3): 115-143.

    [16] [16] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr Opin Solid State Mater Sci, 2016, 20(3): 151-170.

    [19] [19] RAJAN K. Materials informatics[J]. Mater Today, 2005, 8(10): 38-45.

    [21] [21] LIU Y, ZHAO T, JU W, et al. Materials discovery and design using machine learning[J]. J Materiomics, 2017, 3(3): 159-177.

    [22] [22] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Mater, 2013, 1(1): 011002.

    [23] [23] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)[J]. JOM, 2013, 65(11): 1501-1509.

    [24] [24] CURTAROLO S, SETYAWAN W, HART G L W, et al. Aflow: An automatic framework for high-throughput materials discovery[J]. Comput Mater Sci, 2012, 58: 218-226.

    [25] [25] SMITH A, BHAT V, AI Q, et al. Challenges in information-mining the materials literature: A case study and perspective[J]. Chem Mater, 2022, 34(11): 4821-4827.

    [26] [26] COURT C J, COLE J M. Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning[J]. npj Comput Mater, 2020, 6(1): 1-9.

    [27] [27] HUANG E W, LEE W J, SINGH S S, et al. Machine-learning and high-throughput studies for high-entropy materials[J]. Mat Sci Eng R, 2022, 147: 100645.

    [28] [28] LANGNER S, HSE F, PEREA J D, et al. Beyond ternary OPV: High-throughput experimentation and self-driving laboratories optimize multicomponent systems[J]. Adv Mater, 2020, 32(14): 1907801.

    [29] [29] PFEIF E A, KROENLEIN K. Perspective: Data infrastructure for high throughput materials discovery[J]. APL Mater, 2016, 4(5): 053203.

    [30] [30] HU Y-J, ZHAO G, ZHANG M, et al. Predicting densities and elastic moduli of SiO2-based glasses by machine learning[J]. npj Comput Mater, 2020, 6(1): 1-13.

    [31] [31] TAKAHASHI A, KUMAGAI Y, MIYAMOTO J, et al. Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations[J]. Phys Rev Mater, 2020, 4(10): 103801.

    [32] [32] QIN J, LIU Z, MA M, et al. Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics[J]. J Materiomics, 2021, 7(6): 1284-1293.

    [33] [33] LIANG Y, MA M, ZHANG F, et al. Wireless microfluidic sensor for metal ion detection in water[J]. ACS Omega, 2021, 6(13): 9302-9309.

    [34] [34] MOLOKEEV M S, SU B, ALEKSANDROVSKY A S, et al. Machine learning analysis and discovery of zero-dimensional ns2 metal halides toward enhanced photoluminescence quantum yield[J]. Chem Mater, 2022, 34(2): 537-546.

    [35] [35] WARD L, AGRAWAL A, CHOUDHARY A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials[J]. npj Comput Mater, 2016, 2(1): 16028.

    [36] [36] MEFTAHI N, KLYMENKO M, CHRISTOFFERSON A J, et al. Machine learning property prediction for organic photovoltaic devices[J]. npj Comput Mater, 2020, 6(1): 1-8.

    [37] [37] SCHLEDER G R, PADILHA A C M, ACOSTA C M, et al. From DFT to machine learning: Recent approaches to materials science-A review[J]. J Phys Mater, 2019, 2(3): 032001.

    [38] [38] WANG Z, SUN Z, YIN H, et al. Data-driven materials innovation and applications[J]. Adv Mater, 2022, 34(36): 2104113.

    [39] [39] SCOTT D J, COVENEY P V, KILNER J A, et al. Prediction of the functional properties of ceramic materials from composition using artificial neural networks[J]. J Eur Ceram Soc, 2007, 27(16): 4425-4435.

    [40] [40] SCOTT D J, MANOS S, COVENEY P V, et al. Functional ceramic materials database: An online resource for materials research[J]. J Chem Inf Model, 2008, 48(2): 449-455.

    [41] [41] SCOTT D J, MANOS S, COVENEY P V. Design of electroceramic materials using artificial neural networks and multiobjective evolutionary algorithms[J]. J Chem Inf Model, 2008, 48(2): 262-273.

    [42] [42] MORITA K, DAVIES D W, BUTLER K T, et al. Modeling the dielectric constants of crystals using machine learning[J]. J Chem Phys, 2020, 153(2): 024503.

    [43] [43] NODA Y, OTAKE M, NAKAYAMA M. Descriptors for dielectric constants of perovskite-type oxides by materials informatics with first-principles density functional theory[J]. Sci Technol Adv Mater, 2020, 21(1): 92-99.

    [44] [44] KIM E, KIM J, MIN K. Prediction of dielectric constants of ABO3-type perovskites using machine learning and first-principles calculations[J]. Phys Chem Chem Phys, 2022, 24(11): 7050-7059.

    [45] [45] MURDOCK R J, KAUWE S K, WANG A Y T, et al. Is domain knowledge necessary for machine learning materials properties?[J]. Integr Mater Manuf I, 2020, 9(3): 221-227.

    [46] [46] CHILDS C M, WASHBURN N R. Embedding domain knowledge for machine learning of complex material systems[J]. MRS Commun, 2019, 9(3): 806-820.

    [47] [47] YUAN R, LIU Z, BALACHANDRAN P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning[J]. Adv Mater, 2018, 30(7): 1702884.

    [48] [48] KIREEVA N, SOLOV'EV V P. Machine learning analysis of microwave dielectric properties for seven structure types: The role of the processing and composition[J]. J Phys Chem Solids, 2021, 156: 110178.

    [49] [49] LIU Y C, LIU T Y, HUANG T H, et al. Exploring dielectric constant and dissipation factor of LTCC using machine learning[J]. Materials, 2021, 14(19): 5784.

    [50] [50] QIN J, LIU Z, MA M, et al. Structure and microwave dielectric properties of gillespite-type ACuSi4O10 (A=Ca, Sr, Ba) ceramics and quantitative prediction of the Q×f value via machine learning[J]. ACS Appl Mater Interfaces, 2021, 13(15): 17817-17826.

    [51] [51] OBA Y, UMEDA Y, ISHII D. Materials informatics for dielectric loss tangent in the millimeter wave region[J]. Jpn J Appl Phys, 2022, 61: SN1007.

    [52] [52] XU P, CHANG D, LU T, et al. Search for ABO3 type ferroelectric perovskites with targeted multi-properties by machine learning strategies[J]. J Chem Inf Model, 2021, 62(21): A-L.

    [53] [53] KIM H, HAN J, HAN T Y-J. Machine vision-driven automatic recognition of particle size and morphology in SEM images[J]. Nanoscale, 2020, 12(37): 19461-19469.

    [54] [54] IBADAT S, YOUNAS M, SHAHZADA S, et al. Realistic dielectric response of high temperature sintered ZnO ceramic: A microscopic and spectroscopic approach[J]. RSC Adv, 2020, 10(51): 30451-30462.

    [55] [55] ZHANG X, ZHANG L, ZHANG J, et al. Dielectric response and thermally stimulated depolarization current analysis of BaNd1.76Bi0.24Ti5O14 high-temperature microwave capacitors[J]. J Mater Sci, 2014, 50(3): 1141-1149.

    [56] [56] LIU S, COHEN R E. Multiscale simulations of defect dipole-enhanced electromechanical coupling at dilute defect concentrations[J]. Appl Phys Lett, 2017, 111(8): 082903.

    [58] [58] PENG J, HARSHA GUNDA N S, BRIDGES C A, et al. A machine learning approach to predict thermal expansion of complex oxides[J]. Comput Mater Sci, 2022, 210: 111034.

    [59] [59] WANG Z, HUANG S, WEN G, et al. Thermal conductivity prediction and structure-property relationship of CaO-SiO2-Al2O3 ternary system: A combination of molecular dynamics simulations and machine learning[J]. J Mol Liq, 2021, 324(15): 114697.

    [60] [60] HAN T, HUANG J, SANT G, et al. Predicting mechanical properties of ultrahigh temperature ceramics using machine learning[J]. J Am Ceram Soc, 2022, 105(11): 1-13.

    [61] [61] QIN J, LIU Z, MA M, et al. Machine learning-assisted materials design and discovery of low-melting-point inorganic oxides for low-temperature cofired ceramic applications[J]. ACS Sustainable Chem Eng, 2022, 10(4): 1554-1564.

    [62] [62] CHATAUT R, AKL R. Massive MIMO Systems for 5G and beyond Networks-Overview, Recent Trends, Challenges, and Future Research Direction[J]. Sensors, 2020, 20(10): 2753.

    [65] [65] LI L, ZHOU J. Metamaterial technology and its application prospects[J]. Chin J Eng Sci, 2018, 20(6): 69.

    [66] [66] SHARMA Y, ZHANG H H, XIN H. Machine learning techniques for optimizing design of double T-shaped monopole antenna[J]. IEEE T Antenn Propag, 2020, 68(7): 5658-5663.

    [67] [67] KUO Y L, WONG K L. Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations[J]. IEEE T Antenn Propag, 2003, 51(9): 2187-2192.

    [68] [68] WU Q, CHEN W, YU C, et al. Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and array[J]. IEEE T Antenn Propag, 2021, 69(9): 6052-6057.

    [69] [69] NAKMOUCHE M F, ALLAM A M M A, FAWZY D E, et al. Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications[J]. Prog Electromagn Res M, 2021, 105: 183-194.

    [70] [70] JAFARIEH A, NOURI M, BEHROOZI H. Optimized 5G-MMW compact Yagi-Uda antenna based on machine learning methodology[C]//2021 29th Iranian Conference on Electrical Engineering (ICEE), Tehran, Islamic Republic of Iran, 2021: 751-756.

    [71] [71] WU Q, WANG H, HONG W. Broadband millimeter-wave SIW cavity-backed slot antenna for 5G applications using machine-learning-assisted optimization method[C]//2019 International Workshop on Antenna Technology (iWAT), Miami, USA, 2019: 9-12.

    [72] [72] KARUPPUSWAMI S, MONDAL S, CHAHAL P. Design optimization of a 77 GHz antenna array using machine learning[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, USA, 2021: 1199-1204.

    [73] [73] DE LANGE L, LUDICK D J. Application of machine learning for antenna array failure analysis[C]//2018 International Workshop on Computing, Electromagnetics, and Machine Intelligence (CEMi), Stellenbosch, South Africa, 2019: 5-6.

    [74] [74] LIM H J, LEE D H, PARK H B, et al. Near-field-based 5G Sub-6 GHz array antenna diagnosis using transfer learning[J]. Appl Sci, 2021, 11(21): 10164.

    [75] [75] ALZAHED A M, ANTAR Y M M, MIKKI S. Design of neural-network-based mutual coupling compensators for printed planar antenna arrays[C]//2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 2021: 1035-1036.

    [76] [76] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. J Am Ceram Soc, 2006, 89(7): 2063-2072.

    [77] [77] OHIRA M, TAKANO K, MA Z. A novel deep-Q-network-based fine-tuning approach for planar bandpass filter design[J]. IEEE Microw Wirel Co, 2021, 31(6): 638-641.

    [78] [78] WU W J, ZHANG W, LIU Q F, et al. Optimal design of LTCC filter by extracting human experience using fuzzy algorithm[C]//2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, China, 2017: 500-503.

    [79] [79] DU G Y, JIN L. Neural network of calibrated coarse model and application to substrate integrated waveguide filter design[J]. Int J RF Microw C E, 2020, 30(10): 1-17.

    [80] [80] SUN J J, SUN S, YU X, et al. A deep neural network based tuning technique of lossy microwave coupled resonator filters[J]. Microw Opt Techn Let, 2019, 61(9): 2169-2173.

    [81] [81] REZAEE P, TAYARANI M, KNCHEL R. Active learning method for the determination of coupling factor and external Q in microstrip filter design[J]. Prog Electromagn Res, 2011, 120: 459-479.

    [82] [82] JAMSHIDI M, LALBAKHSH A, MOHAMADZADE B, et al. A novel neural-based approach for design of microstrip filters[J]. AEU-Int J Electron C, 2019, 110: 152847.

    [83] [83] CHANG J, LIU Z, MA M, et al. Parallel preparation and properties investigation on Li2O-Nb2O5-TiO2 microwave dielectric ceramics[J]. J Eur Ceram Soc, 2017, 37(13): 3951-3957.

    [84] [84] LIANG C, HUANG J, GUO W, et al. Low temperature co-sintering simulation and properties analysis of 3D printed SiO2-B2O3 nanoparticles based on molecular dynamics simulation[J]. Comput Mater Sci, 2022, 210: 111447.

    [85] [85] WANG X, LI L, HONG W B, et al. Preparation and microwave dielectric properties of BPO4 ceramics with ultra-low dielectric constant[J]. J Mater Sci: Mater Electron, 2021, 32(5): 6660-6667.

    [86] [86] XI J, SHANG F, LIU F, et al. A facile preparation of temperature-stable borate ultra-low permittivity microwave ceramics for LTCC applications[J]. Ceram Int, 2020, 46(11): 19650-19653.

    [87] [87] HE G, WANG H, LI Q, et al. A microwave dielectric ceramic with ultra-low dielectric constant prepared by reaction sintering method[J]. J Electron Mater, 2022, 51(9): 5026-5031.

    [88] [88] LI Y, ZHOU J, SHEN J, et al. Ultra-low permittivity HSM/PTFE composites for high-frequency microwave circuit application[J]. J Mater Sci: Mater Electron, 2022, 33(13): 10096-10103.

    [89] [89] NELO M, VAHERA T, SIPONKOSKI T, et al. Ultra-low permittivity ULTCC composite materials[J]. Appl Phys Lett, 2021, 118(14): 142901.

    [90] [90] PLVLGYI P S, NELO M, PITKNEN O, et al. Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication[J]. Nanotechnology, 2020, 31(43): 435203.

    Tools

    Get Citation

    Copy Citation Text

    QIN Jincheng, LIU Zhifu, MA Mingsheng, LI Yongxiang. Research Progress on Dielectric Ceramics and Devices Within Data-Driven Paradigm[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 921

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Sep. 2, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Jincheng QIN (qinjc@student.sic.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics