Journal of Innovative Optical Health Sciences, Volume. 14, Issue 2, 2150003(2021)

Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method

Liang Hong... Jia Zhang, Junxian Geng, Junle Qu and Liwei Liu* |Show fewer author(s)
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, P. R. China
  • show less
    References(37)

    [1] [1] J. Tian, B. Huang, M. H. Nawaz, W. Zhang, "Recent advances of multi-dimensional porphyrinbased functional materials in photodynamic therapy," Coord. Chem. Rev. 420, 213410 (2020).

    [2] [2] H. Chen, C. He, T. Chen, X. Xue, "New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O2-generation in hypoxic tumors," Biomater. Sci. 8(14), 3994–4002 (2020).

    [3] [3] M. Hockel, P. Vaupel, "Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects," JNCI-J. Natl. Cancer Inst. 93(4), 266–276 (2001).

    [4] [4] X. Li, J. Wang, R. Cui, D. Xu, L. Zhu, Z. Li, H. Chen, Y. Gao, L. Jia, "Hypoxia/pH dual-responsive nitroimidazole-modified chitosan/rose bengal derivative nanoparticles for enhanced photodynamic anticancer therapy," Dyes Pigment. 179, 108395 (2020).

    [5] [5] J. M. Brown, W. R. Wilson, "Exploiting tumour hypoxia in cancer treatment," Nat. Rev. Cancer 4(6), 437–447 (2004).

    [6] [6] A. L. Harris, "Hypoxia — a key regulatory factor in tumour growth," Nat. Rev. Cancer 2(1), 38–47 (2002).

    [7] [7] B. Yang, Z. Dai, G. Zhang, Z. Hu, X. Yao, S. Wang, Q. Liu, X. Zheng, "Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-ions release and hypoxia relief for multimodal synergistic chemodynamic/ photodynamic/photothermalcancer therapy," Adv. Healthc. Mater. 9(21), 1901634 (2020).

    [8] [8] X. Liu, G. Li, M. Xie, S. Guo, W. Zhao, F. Li, S. Liu, Q. Zhao, "Rational design of type I photosensitizers based on Ru(II) complexes for effective photodynamic therapy under hypoxia," Dalton Trans. 49 (32), 11192–11200 (2020).

    [9] [9] J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li, T. Luo, K. Zhang, Y. Zhao, J. Liu, "Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer," ACS Nano 11(12), 12849–12862 (2017).

    [10] [10] Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, Y. Hu, "Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy," Nat. Commun. 6, 8785 (2015).

    [11] [11] B. Pucelik, A. Su?ek, A. Barzowska, J. M. Dabrowski, "Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer," Cancer Lett. 492, 116–135 (2020).

    [12] [12] N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, "Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy," Nano-Micro Lett. 12(1), 15 (2020).

    [13] [13] Q. He, H. Hu, Q. Zhang, T. Wu, Y. Zhang, K. Li, C. Shi, "Ultra-dispersed biomimetic nanoplatform fabricated by controlled etching agglomerated MnO2 for enhanced photodynamic therapy and immune activation," Chem. Eng. J. 397, 125478 (2020).

    [14] [14] Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, "Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy," Adv. Mater. 28(33), 7129–7136 (2016).

    [15] [15] B. Huang, S. Chen, W. Pei, Y. Xu, Z. Jiang, C. Niu, L. Wang, "Oxygen-sufficient nanoplatform for chemo-sonodynamic therapy of hypoxic tumors," Front. Chem. 8, 358 (2020).

    [16] [16] X. Li, H. Yu, Y. Huang, Y. Chen, J. Wang, L. Xu, F. Zhang, Y. Zhuge, X. Zou, "Preparation of microspheres encapsulating sorafenib and catalase and their application in rabbit VX2 liver tumor," Biomed. Pharmacother. 129, 110512 (2020).

    [17] [17] X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su, Y. Lv, "BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics," Analyst 137(19), 4552–4558 (2012).

    [18] [18] X. Cheng, L. He, J. Xu, Q. Fang, L. Yang, Y. Xue, X. Wang, R. Tang, "Oxygen-producing catalasebased prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy," Acta Biomater. 112, 234–249 (2020).

    [19] [19] Y. Fan, S. Guan, W. Fang, P. Li, B. Hu, C. Shan, W. Wu, J. Cao, B. Cheng, W. Liu, Y. Tang, "A smart tumor-microenvironment responsive nanoprobe for highly selective and efficient combination therapy," Inorg. Chem. Front. 6(12), 3562–3568 (2019).

    [20] [20] L. Deng, D. Sheng, M. Liu, L. Yang, H. Ran, P. Li, X. Cai, Y. Sun, Z. Wang, "A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors," Biomater. Sci. 8(3), 858–870 (2020).

    [21] [21] M. Li, Y. Shao, J. H. Kim, Z. Pu, X. Zhao, H. Huang, T. Xiong, Y. Kang, G. Li, K. Shao, J. Fan, J. W. Foley, J. S. Kim, X. Peng, "Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics," J. Am. Chem. Soc. 142(11), 5380–5388 (2020).

    [22] [22] Z. Zhou, B. Zhang, H. Wang, A. Yuan, Y. Hu, J. Wu, "Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles," Theranostics 8(18), 4898–4911 (2018).

    [23] [23] X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, "Innovative strategies for hypoxic-tumor photodynamic therapy," Angew. Chem.-Int. Edit. 57(36), 11522–11531 (2018).

    [24] [24] X. Shi, Q. Zhan, X. Yan, J. Zhou, L. Zhou, S. Wei, "Oxyhemoglobin nano-recruiter preparation and its application in biomimetic red blood cells to relieve tumor hypoxia and enhance photodynamic therapy activity," J. Mat. Chem. B 8(3), 534–545 (2020).

    [25] [25] P. W. Buehler, Y. Zhou, P. Cabrales, Y. Jia, G. Sun, D. R. Harris, A. G. Tsai, M. Intaglietta, A. F. Palmer, "Synthesis, biophysical properties and pharmacokinetics of ultrahigh molecular weight tense and relaxed state polymerized bovine hemoglobins," Biomaterials 31(13), 3723–3735 (2010).

    [26] [26] L. Yao, L. Feng, D. Tao, H. Tao, X. Zhong, C. Liang, Y. Zhu, B. Hu, Z. Liu, Y. Zheng, "Perfluorocarbon nanodroplets stabilized with cisplatin- prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer," Nanoscale 12(27), 14764–14774 (2020).

    [27] [27] K. de Oliveira Gon?alves, D. P. Vieira, L. C. Courrol, "Synthesis and characterization of aminolevulinic acid gold nanoparticles: Photo and sonosensitizer agent for atherosclerosis," J. Lumines. 197, 317–323 (2018).

    [28] [28] L. Hong, C. L. Zhou, F. P. Chen, D. Han, C. Y. Wang, J. X. Li, Z. Chi, C. G. Liu, "Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method," J. Microencapsul. 34(8), 707– 721 (2017).

    [29] [29] A. K. Das, P. K. Nanda, S. Bandyopadhyay, R. Banerjee, S. Biswas, D. J. McClements, "Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review," Compr. Rev. Food. Sci. Food Saf. 19(5), 2677–2700 (2020).

    [30] [30] D. J. McClements, "Edible nanoemulsions: fabrication, properties, and functional performance," Soft Matter 7(6), 2297–2316 (2011).

    [31] [31] F. Hansali, M. Wu, D. Bendedouch, E. Marie, "n- Butyl cyanoacrylate miniemulsion polymerization via the phase inversion composition method," Colloid Surf. A-Physicochem. Eng. Asp. 393, 133–138 (2012).

    [32] [32] Q. Chen, J. Chen, C. Liang, L. Feng, Z. Dong, X. Song, G. Song, Z. Liu, "Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy," J. Control. Release 263, 79–89 (2017).

    [33] [33] G. Song, Y. Chen, C. Liang, X. Yi, J. Liu, X. Sun, S. Shen, K. Yang, Z. Liu, "Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy," Adv. Mater. 28(33), 7143–7148 (2016).

    [34] [34] X. Tan, S. Luo, D. Wang, Y. Su, T. Cheng, C. Shi, "A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties," Biomaterials 33(7), 2230–2239 (2012).

    [35] [35] M. E. Davis, Z. Chen, D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer," Nat. Rev. Drug Discov. 7(9), 771–782 (2008).

    [36] [36] F. Alexis, E. Pridgen, L. K. Molnar, O. C. Farokhzad, "Factors affecting the clearance and biodistribution of polymeric nanoparticles," Mol. Pharm. 5(4), 505–515 (2008).

    [37] [37] P. Zhang, S. R. Zhao, J. X. Li, L. Hong, M. A. Raja, L. J. Yu, C. G. Liu, "Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system," J. Biomater. Appl. 31(1), 13–22 (2016).

    Tools

    Get Citation

    Copy Citation Text

    Liang Hong, Jia Zhang, Junxian Geng, Junle Qu, Liwei Liu. Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 26, 2020

    Accepted: Nov. 23, 2020

    Published Online: Apr. 7, 2021

    The Author Email: Liu Liwei (liulw@szu.edu.cn)

    DOI:10.1142/s1793545821500036

    Topics