Infrared and Laser Engineering, Volume. 52, Issue 1, 20220296(2023)

Research progress of chaotic free-space optical communication

Chao Wang1, Yize Dong1, Huiting Wang2, Ji Gao1, Zhixin Tian1, Jianwei Gao1, and Ning Jiang3、*
Author Affiliations
  • 1Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100094, China
  • 2Security Research Institute, China Academy of Information and Communications Technology, Beijing 100191, China
  • 3School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    References(34)

    [1] D L Fried. Scintillation of a ground-to-space laser illuminator. Journal of the Optical Society of America, 57, 980-983(1967).

    [2] Duorui Gao, Zhuang Xie, Rong Ma, et al. Development current status and trend analysis of satellite laser communicaion (Invited). Acta Photonica Sinica, 50, 0406001(2021).

    [3] P O Minott. Scintillation in an earth-to-space propagation path. Journal of the Optical Society of America, 62, 885-888(1972).

    [4] [4] Sans M, Sodnik Z, Zayer I, et al. Design of the ESA optical ground station f participation in LLCD [C]Proc Intemational Conference on Space Optical Systems Applications (ICSOS 2012), 2012: 912.

    [5] A U Chaudhry, H Yabikomeroglu. Laser intersatellite links in a starlink constellation: A classification and analysis. IEEE Vehicular Technology Magazine, 16, 48-56(2021).

    [6] [6] Fields R, Lunde C, Wong R, et al. NFIREtoTerraSARX laser communication results: Satellite pointing, disturbances, other attributes consistent with successful perfmance [C]Senss Systems f Space Applications III, SPIE, 2009, 7330: 73300Q.

    [7] [7] Miglie R, Duncan J, Pulcina V, et al. Outlook on EDRSC [C]International Conference on Space Optics (ICSO 2016), SPIE, 2017, 10562: 105622S.

    [8] [8] Chishiki Y, Yamalawa S, Takano Y, et al. Overview of optical data relay system in JAXA [C]FreeSpace Laser Communication Atmospheric Propagation XXVIII, SPIE, 2016, 9739: 97390D.

    [9] [9] KuboOka T, Kunimi H, Suzuki K, et al. Development of "HICALI": High speed optical feeder link system between GEO ground [C]International Conference on Space Optics (ICSO 2018), SPIE, 2019, 11180: 1118060.

    [10] Qingjun Zhang, Jian Zhang, Huan Zhang, et al. The study of HY-2A satellite engineering development and in-orbit movement. Strategic Study of CAE, 15, 12-18(2013).

    [11] Jianying Ren, Huayan Sun, Laixian Zhang, et al. Development status of space laser communication and new method of networking. Laser & Infrared, 49, 143-150(2019).

    [14] R Lang, K Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 16, 347-355(1980).

    [15] A Argyris, D Syvridis, L Larger, et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [16] G D Vanwiggeren, R Roy. Communication with chaotic lasers. Science, 279, 1198-1200(1998).

    [17] A Bogris, P Rizomiliotis, K E Chlouverakis, et al. Feedback phase in optically generated chaos. A secret key for cryptographic applications. IEEE Journal of Quantum Electronics, 44, 119-124(2008).

    [18] [18] Argyris A, Bogris A, Giles I, et al. Subcarrier modulation boosts chaotic optical communication systems to errfree perf mance [C]2009 Conference on Optical Fiber Communication, 2009: JWA45.

    [19] A B Wang, Y B Yang, B J Wang, et al. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt Express, 21, 8701-8710(2013).

    [20] J X Ke, L L Yi, Z Yang, et al. 32 Gbs chaotic optical communications by deep-learning-based chaos synchronization. Opt Lett, 44, 5776-5779(2019).

    [21] Z X Zhao, M F Cheng, C K Luo, et al. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution. Opt Lett, 44, 2605-2608(2019).

    [22] X M Song, B Liu, H X Zhang, et al. Security-enhanced OFDM-PON with two-level coordinated encryption strategy at the bit-level and symbol-level. Opt Express, 28, 35061-35073(2020).

    [23] L Jiang, Y Pan, A L Yi, et al. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication. Opt Express, 29, 12750-12762(2021).

    [24] N Jiang, A K Zhao, C Xue, et al. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt Lett, 44, 1536-1539(2019).

    [25] A K Zhao, N Jiang, S Q Liu, et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling. Journal of Lightwave Technology, 39, 2288-2295(2021).

    [26] N F Rulkov, M A Vorontsov, L Llling. Chaotic free-space laser communication over a turbulent channel. Physical Review Letters, 89, 277905(2002).

    [27] V Annovazzi-Lodi, G Aromataris, M Benedetti, et al. Secure chaotic transmission on a free-space optics data link. IEEE Journal of Quantum Electronics, 44, 1089-1095(2008).

    [28] [28] Mahmud N, ElAraby E, Shaw H, et al. Securing autosynchronizing communication over freespace optics using quantum key distribution chaotic systems [C]Quantum Communications Quantum Imaging XVI, SPIE, 2018, 10771: 107710U.

    [29] M Li, Y F Hong, Y J Song, et al. Effect of controllable parameter synchronization on the ensemble average bit error rate of space-to-ground downlink chaos laser communication system. Opt Express, 26, 2954-2964(2018).

    [30] M Li, Y Chen, Y J Song, et al. DOE effect on BER performance in MSK space uplink chaotic optical communication. Chinese Optics Letters, 18, 070601(2020).

    [31] Ruiqiang Guo, Min Li, Junpeng Wu, et al. Space optical communication systems based on differential chaotic keying and its security analysis. Infrared and Laser Engineering, 49, 20200207(2020).

    [32] [32] ElAraby E, Namazi N. Chaotic architectures f secure freespace optical communication [C]2016 26th International Conference on Field Programmable Logic Applications (FPL), 2016: 15.

    [33] M Li, Y F Hong, S Wang, et al. Radiation-induced mismatch effect on performances of space chaos laser communication systems. Opt Lett, 43, 5134-5137(2018).

    [34] A Niaz, F Qamar, M Ali, et al. Performance analysis of chaotic FSO communication system under different weather conditions. Transactions on Emerging Telecommunications Technologies, 30, e3486(2018).

    [35] M Li, M W Chen, Y F Yang, et al. Effect of amplifier spontaneous emission noise on performance of space chaotic laser communication systems. IEEE Journal of Quantum Electronics, 57, 1-8(2021).

    [36] Huilong Yu, Zhikang Bao, Xuan Wang, et al. XY-2 satellite laser communication equipment PAT test in orbit. Infrared and Laser Engineering, 50, 20200327(2021).

    Tools

    Get Citation

    Copy Citation Text

    Chao Wang, Yize Dong, Huiting Wang, Ji Gao, Zhixin Tian, Jianwei Gao, Ning Jiang. Research progress of chaotic free-space optical communication[J]. Infrared and Laser Engineering, 2023, 52(1): 20220296

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical communication and sensing

    Received: Apr. 27, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email: Jiang Ning (uestc_nj@uestc.edu.cn)

    DOI:10.3788/IRLA20220296

    Topics