Journal of Inorganic Materials, Volume. 39, Issue 12, 1325(2024)

Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films

Botao ZHANG1, Tingting SUN3、*, Lianjun WANG1、*, and Wan JIANG1,2
Author Affiliations
  • 11. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • 22. Institute of Functional Materials, Donghua University, Shanghai 201620, China
  • 33. College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
  • show less
    References(43)

    [1] J PEI, B CAI, H L ZHUANG et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 7, 1856(2020).

    [2] B JIA, Y HUANG, Y WANG et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe. Energy & Environmental Science, 15, 1920(2022).

    [3] Z HU, Y FU, M JIANG et al. Thermal stability of Nb/Mg3SbBi interface. Journal of Inorganic Materials, 38, 931(2023).

    [4] M HONG, J ZOU, Z CHEN et al. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Advanced Materials, 31, 1807071(2019).

    [5] S XU, X L SHI, M DARGUSCH et al. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Progress in Materials Science, 100840(2021).

    [6] H JIN, J LI, J IOCOZZIA et al. Hybride organisch- anorganische thermoelektrische materialien und baueinheiten. Angewandte Chemie International Edition, 131, 15348(2019).

    [7] L ZHANG, X L SHI, Y L YANG et al. Flexible thermoelectric materials and devices: from materials to applications. Materials Today, 62(2021).

    [8] M BURTON, G HOWELLS, J ATOYO et al. Printed thermoelectrics. Advanced Materials, 34, 2108183(2022).

    [9] Z LIN, C HOLLAR, J S KANG et al. A solution processable high- performance thermoelectric copper selenide thin film. Advanced Materials, 29, 1606662(2017).

    [10] Y XU, B WU, C HOU et al. High thermoelectric performance in Ti3C2Tx MXene/Sb2Te3 composite film for highly flexible thermoelectric devices. Global Challenges, 8, 2300032(2024).

    [11] D W NEWBROOK, S P RICHARDS, V K GREENACRE et al. Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators. ACS Applied Energy Materials, 3, 5840(2020).

    [12] Z H ZHENG, X L SHI, D W AO et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nature Sustainability, 6, 180(2022).

    [13] J SHI, X WU, X GENG et al. Anisotropy engineering in solution- derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices. Chemical Engineering Journal, 141450(2023).

    [15] M ZENG, Y DU, Q JIANG et al. High-throughput printing of combinatorial materials from aerosols. Nature, 617, 292(2023).

    [16] D ZHANG, X J G LIM, X LI et al. 3D-Printed porous thermoelectrics for in situ energy harvesting. ACS Energy Letters, 8, 332(2023).

    [17] D BERETTA, A J BARKER, I MAQUEIRA-ALBO et al. Thermoelectric properties of highly conductive poly(3,4- ethylenedioxythiophene) polystyrene sulfonate printed thin films. ACS Applied Materials & Interfaces, 9, 18151(2017).

    [18] J JING, L CHOPPLET, N BATTAGLINI et al. The role of substrates and electrodes in inkjet-printed PEDOT: PSS thermoelectric generators. Journal of Materials Chemistry C, 12, 6185(2024).

    [19] T JUNTUNEN, H JUSSILA, M RUOHO et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Advanced Functional Materials, 28, 1800480(2018).

    [20] S FERHAT, C DOMAIN, J VIDAL. Flexible thermoelectric device based on TiS2HAx n-type nanocomposite printed on paper. Organic Electronics, 256(2019).

    [21] S HORIKE, T FUKUSHIMA, T SAITO et al. Highly stable n-type thermoelectric materials fabricated via electron doping into inkjet-printed carbon nanotubes using oxygen-abundant simple polymers. Molecular Systems Design & Engineering, 2, 616(2017).

    [22] J DU, B ZHANG, M JIANG et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires. Advanced Functional Materials, 33, 2213564(2023).

    [23] Z LU, M LAYANI, X ZHAO et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 10, 3551(2014).

    [24] B CHEN, S R DAS, W ZHENG et al. Inkjet printing of single- crystalline Bi2Te3 thermoelectric nanowire networks. Advanced Electronic Materials, 3, 1600524(2017).

    [27] Y LIU, Q ZHANG, A HUANG et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation. Nature Communications, 15, 2141(2024).

    [28] S WANG, M JIANG, L WANG et al. n-Type Pb-free AgBiSe2 based thermoelectric materials with stable cubic phase structure. Journal of Inorganic Materials, 38, 807(2023).

    [29] L LI, W ZHAI, C WANG et al. Maximizing phonon scattering efficiency by Cu2Se alloying in AgCuTe thermoelectric materials. Journal of Materials Chemistry A, 10, 6701(2022).

    [30] T WEI, P QIU, K ZHAO et al. Ag2Q-Based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Advanced Materials, 35, 2110236(2023).

    [31] R WU, Z LI, Y LI et al. Synergistic optimization of thermoelectric performance in p-type Ag2Te through Cu substitution. Journal of Materiomics, 5, 489(2019).

    [32] W LIU, L YANG, Z CHEN et al. Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Advanced Materials, 32, 1905703(2020).

    [33] S DENG, X JIANG, L CHEN et al. Ultralow thermal conductivity and high thermoelectric performance in AgCuTe1-xSex through isoelectronic substitution. ACS Applied Materials & Interfaces, 13, 868(2021).

    [34] J JIANG, H ZHU, Y NIU et al. Achieving high room-temperature thermoelectric performance in cubic AgCuTe. Journal of Materials Chemistry A, 8, 4790(2020).

    [35] Y NIU, S LI, J MAO et al. Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. Nano Energy, 105297(2020).

    [37] J LI, J LYU, W YANG et al. The remarkable role of indium in synergistically optimizing carrier concentration and phase distribution of AgCuTe-based materials. Small, 20, 2311340(2024).

    [38] J LYU, J LI, W YANG et al. Enhancing thermoelectric performance in GeTe through Ge enrichment regulation and AgCuTe alloying. Chemical Engineering Journal, 149695(2024).

    [39] Z MA, T XU, W LI et al. High thermoelectric performance SnTe with a segregated and percolated structure. ACS Applied Materials & Interfaces, 14, 9192(2022).

    [40] S ROYCHOWDHURY, M K JANA, J PAN et al. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angewandte Chemie International Edition, 57, 4043(2018).

    [41] X LUAN, J LI, S WU et al. A nanoscale perspective of the coexistence of multidimensional defects in the AgCuTe system. Nano Energy, 109505(2024).

    [42] M ZENG, D ZAVANELLI, J CHEN et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 51, 485(2022).

    Tools

    Get Citation

    Copy Citation Text

    Botao ZHANG, Tingting SUN, Lianjun WANG, Wan JIANG. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films[J]. Journal of Inorganic Materials, 2024, 39(12): 1325

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 1, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: SUN Tingting (Tingtingsun@dhu.edu.cn), WANG Lianjun (wanglj@dhu.edu.cn)

    DOI:10.15541/jim20240156

    Topics