Optoelectronics Letters, Volume. 18, Issue 5, 276(2022)
Numerical modeling of ZnSnO/CZTS based solar cells
[1] [1] HADDOUT A, RAIDOU A, FAHOUME M. A review on the numerical modeling of CdS/CZTS-based solar cells[J]. Applied physics A, 2019, 125(2):124.
[2] [2] YAN C, HUANG J, SUN K, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature energy, 2018, 3(9):764-772.
[3] [3] JACKSON P, WUERZ R, HARISKOS D, et al. Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%[J]. Physica status solidi (RRL)-rapid research letters, 2016, 10(8):583-586.
[4] [4] GREEN M, DUNLOP E, HOHL E J, et al. Solar cell efficiency tables (version 57)[J]. Progress in photovoltaics:research and applications, 2021, 29(1):3-15.
[5] [5] COUREL M, ANDRADE-ARVIZU J A, VIGIL-GALáN O. The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells[J]. Materials research express, 2016, 3(9):095501.
[6] [6] COUREL M, VALENCIA-RESENDIZ E, ANDRADEARVIZU J A, et al. Towards understanding poor performances in spray-deposited Cu2ZnSnS4 thin film solar cells[J]. Solar energy materials and solar cells, 2017, 159:151-158.
[7] [7] LIU B, GUO J, HAO R, et al. Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell[J]. Solar energy, 2020, 201:219-226.
[8] [8] CROVETTO A, PALSGAARD M L N, GUNST T, et al. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells[J]. Applied physics letters, 2017, 110:083903.
[9] [9] CUI X, SUN K, HUANG J, et al. Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer[J]. Chemistry of materials, 2018, 30(21):7860-7871.
[10] [10] HADDOUT A, RAIDOU A, FAHOUME M, et al. Influence of CZTS layer parameters on cell performance of kesterite thin-film solar cells[C]//Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, April 15-17, 2018, Saidia, Morocco. Singapore:Springer, 2019:640-646.
[11] [11] HADDOUT A, FAHOUME M, QACHAOU A, et al. Understanding effects of defects in bulk Cu2ZnSnS4 absorber layer of kesterite solar cells[J]. Solar energy, 2020, 211:301-311.
[12] [12] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin solid films, 2000, 361-362:527-532.
[13] [13] SHIN B, GUNAWAN O, ZHU Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber:Cu2ZnSnS4 solar cell with 8.4% efficiency[J]. Progress in photovoltaics research & applications, 2013, 21 (1):72-76.
[14] [14] ZHANG H, CHENG S, YU J, et al. Prospects of Zn (O, S) as an alternative buffer layer for Cu2ZnSnS4 thin: film solar cells from numerical simulation[J]. Micro & nano letters, 2016, 11(7):386-390.
[15] [15] DJINKWI W M, OUéDRAOGO S, NDJAKA J M B. Theoretical analysis of minority carrier lifetime and Cd-free buffer layers on the CZTS based solar cell performances[J]. Optik, 2019, 183:284-293.
[16] [16] KAPILASHRAMI M, KRONAWITTER C X, T?RNDAHL T, et al. Soft X-ray characterization of Zn1?xSnxOy electronic structure for thin film photovoltaics[J]. Physical chemistry chemical physics, 2012, 14: 10154.
[17] [17] SO H S, HWANG S B, JUNG D H, et al. Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements[J]. Journal of the Korean physical society, 2017, 70(7):706-713.
[18] [18] JHUMA F A, RASHID M J. Simulation study to find suitable dopants of CdS buffer layer for CZTS solar cell[J]. Journal of theoretical and applied physics, 2020, 14(1):75-84.
[19] [19] GRENET L, EMIEUX F, ANDRADE-ARVIZU J, et al. Sputtered ZnSnO buffer layers for kesterite solar cells[J]. ACS applied energy materials, 2020, 3(2): 1883-1891.
[20] [20] PLATZER-BJ?RKMAN C, FRISK C, LARSEN J K, et al. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1? xSnxOy buffer layers[J]. Applied physics letters, 2015, 107(24): 243904.
[21] [21] ERICSON T, LARSSON F, T?RNDAHL T, et al. Zinc tin oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd:free Cu2ZnSnS4 solar cell[J]. Solar RRL, 2017, 1(5):1700001.
[22] [22] LARSEN J K, LARSSON F, T?RNDAHL T, et al. Cadmium free Cu2ZnSnS4 solar cells with 9.7% efficiency[J]. Advanced energy materials, 2019, 9(21): 1900439.
[23] [23] TAJIMA S, UMEHARA M, MISE T. Photovoltaic properties of Cu2ZnSnS4 cells fabricated using ZnSnO and ZnSnO/CdS buffer layers[J]. Japanese journal of applied physics, 2016, 55(11):112302.
[24] [24] CUI X, SUN K, HUANG J, et al. Cd-Free Cu2ZnSnS4 solar cell with an efficiency greater than 10% enabled by Al2O3 passivation layers[J]. Energy & environmental science, 2019, 12(9):2751-2764.
Get Citation
Copy Citation Text
Assiya Haddout, Mounir Fahoume, Abderrahim Raidou, Mohamed Lharch. Numerical modeling of ZnSnO/CZTS based solar cells[J]. Optoelectronics Letters, 2022, 18(5): 276
Received: Sep. 14, 2021
Accepted: Nov. 22, 2021
Published Online: Jan. 20, 2023
The Author Email: Haddout Assiya (assiyahd@gmail.com)