Acta Optica Sinica, Volume. 45, Issue 6, 0628010(2025)

Nonlinear Radiation and Geometric Invariant Matching for Multimodal Imagery

Yuxuan Liu1... Li Zhang1, Zhongli Fan2,*, Yushan Sun1, Haibin Ai1 and Xueqing Ban1 |Show fewer author(s)
Author Affiliations
  • 1Chinese Academy of Surveying & Mapping, Beijing 100036, China
  • 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Hubei , China
  • show less
    Figures & Tables(17)
    Multi-scale, multi-directional Log-Gabor convolution results for an optical-depth image pair
    Example of feature detection results. (a) An optical-depth image pair; (b) maximum moment maps; (c) minimum moment maps; (d) weighted moment maps; (e) detected feature points
    Process of feature description
    Comparison of direction index maps for an optical-near infrared image pair under different rotation angles. (a) Original image pair; (b) 0°; (c) 60°; (d) 120°
    Original and modified direction index maps under different rotation angles. (a) Optical image rotated 60°; (b) optical image after modification; (c) near infrared image rotated 60°; (d) near infrared image after modification
    Visualization results of feature matching at different stages for an optical-near infrared image pair. (a) Original multimodal image pair; (b) extracted feature points; (c) original index map and main feature directions; (d) modified index map and main feature directions; (e) matching results.
    Template matching results. (a) Original multimodal image pair; (b) coarsely corrected image pair; (c) template features; (d) matching point pairs obtained on corrected image; (e) matching point pairs obtained on original image; (f) coordinates of partially matched points
    Visualization comparison of different algorithms on vision multimodal images (left image shows matching results, and right image shows fusion results)
    Visualization comparison of different algorithms on medical multimodal images (left image shows matching results, and right image shows fusion results)
    Visualization comparison of different algorithms on remote sensing multimodal images (left image shows matching results, and right image shows fusion results)
    Performance of algorithm on NCM and RMSE under different rotation angles
    • Table 1. Experimental data

      View table

      Table 1. Experimental data

      AeraDataset No.TypeNumber
      Vision1Low light RGB‑IR20
      2RGB‑Depth20
      3RGB‑NIR20
      Medical1PD‑T120
      2Multisource‑Retina20
      3T1‑T220

      Remote

      sensing

      1Multitemporal‑Optical20
      2Optical‑SAR20
      3Optical‑IR20
    • Table 2. Average performance of NRGM algorithm under different parameter settings across various datasets

      View table

      Table 2. Average performance of NRGM algorithm under different parameter settings across various datasets

      s o lNCMPreRecF1RMSESR
      2 12 721681.2491.2276.3282.281.4994.44
      3 12 722261.2497.8084.0489.631.1698.89
      4 12 722384.5996.6083.9689.211.1997.78
      5 12 722152.2892.1881.3585.711.4595.56
      4 8 722267.7696.7383.5288.931.2097.78
      4 10 722294.1093.4481.3186.171.3495.56
      4 12 722384.5996.6083.9689.211.1997.78
      4 16 722387.4995.8284.2188.771.2798.89
      4 12 602243.6397.0082.8388.611.2098.89
      4 12 722384.5996.6083.9689.211.1997.78
      4 12 842447.7897.8686.1790.821.16100.00
      4 12 962476.7293.5683.6287.591.3796.67
    • Table 3. Quantitative experimental results of different algorithms on visual multimodal images

      View table

      Table 3. Quantitative experimental results of different algorithms on visual multimodal images

      DatasetMetricsSIFTRIFTHOWPASSMatchFormerSemLAGIFTNRGM
      1NCM8.158.504.00112.300.8011.051189.602686.40
      Pre73.5124.4812.7864.014.677.3971.2795.92
      Rec81.3126.1316.1767.606.6610.2986.5969.74
      F177.0824.9414.0065.715.438.5876.3880.66
      RMSE2.444.804.742.904.884.842.671.48
      SR8525109010158595
      2NCM025.956.0059.503.308.80968.552188.00
      Pre040.4311.7140.255.458.5668.3996.26
      Rec041.8912.3540.489.7110.7880.7675.59
      F1040.1911.9540.356.249.5372.5684.37
      RMSE5.004.034.723.694.854.872.851.39
      SR055155551080100
      3NCM376.25712.20731.651679.251817.55261.702719.103889.40
      Pre93.5385.4889.9687.0991.0448.0295.0591.96
      Rec97.7684.9292.5190.1396.8551.0798.9896.31
      F195.1583.4690.8988.2093.2849.4096.4893.47
      RMSE1.402.132.001.891.873.721.251.23
      SR9590959095759590
    • Table 4. Quantitative experimental results of different algorithms on medical multimodal images

      View table

      Table 4. Quantitative experimental results of different algorithms on medical multimodal images

      DatasetMetricsSIFTRIFTHOWPASSMatchFormerSemLAGIFTNRGM
      1NCM9.80100.1538.90285.2573.8568.50309.501987.05
      Pre41.1347.2916.4481.8419.0115.6427.3596.90
      Rec44.7752.4616.9587.3219.4616.2436.5399.53
      F142.5249.5216.6684.4419.2315.9330.5797.57
      RMSE3.473.634.502.214.324.484.280.88
      SR40602095202030100
      2NCM29.10352.10254.85302.85588.15316.201498.003664.80
      Pre22.8845.8442.4444.1836.5128.8747.3898.26
      Rec25.0847.0543.7545.1541.5938.4149.6196.80
      F123.5146.4043.0744.6438.6032.5548.2197.49
      RMSE4.253.543.603.503.774.123.131.11
      SR20505050504550100
      3NCM5.65300.5541.65414.3041.2074.251802.852242.00
      Pre41.1668.6411.9389.149.5810.2587.2399.94
      Rec44.5474.3311.9093.099.4910.5992.8099.91
      F141.9971.1811.9091.039.5310.4189.7899.92
      RMSE3.572.834.591.884.674.681.790.65
      SR358015100101595100
    • Table 5. Quantitative experimental results of different algorithms on remote sensing multimodal images

      View table

      Table 5. Quantitative experimental results of different algorithms on remote sensing multimodal images

      DatasetMetricsSIFTRIFTHOWPASSMatchFormerSemLAGIFTNRGM
      1NCM20.3031.2518.75195.0540.1529.202163.153950.80
      Pre53.1630.5915.3168.4115.2213.0085.3199.95
      Rec58.2734.0418.1069.5018.5116.5291.2492.41
      F155.5131.9916.5168.7816.6914.4787.3495.80
      RMSE3.174.294.512.804.484.581.930.98
      SR60402090202590100
      2NCM05.407.8558.200.059.10662.901519.65
      Pre014.3614.6252.610.5518.2761.1587.70
      Rec016.5915.5251.490.8322.7478.1059.64
      F1015.2115.0351.890.6620.1867.7570.72
      RMSE5.004.874.583.315.004.443.111.74
      SR01025850359090
      3NCM0.1522.050.556.5525.2018.9541.70438.85
      Pre3.7553.046.7815.0416.7823.195.8189.95
      Rec3.7563.676.7817.6019.2622.868.2789.23
      F13.7556.806.7816.1817.8322.986.5889.57
      RMSE4.913.394.824.464.664.594.841.40
      SR57510202515590
    • Table 6. Average running time of different algorithms

      View table

      Table 6. Average running time of different algorithms

      Aera

      SIFT

      (C++)

      RIFT

      (MATLAB)

      HOWP

      (MATLAB)

      ASS

      (MATLAB)

      MatchFormer

      (Python)

      SemLA

      (Python)

      GIFT

      (MATLAB)

      NRGM

      (MATLAB)

      Vision0.9472.718.6221.407.263.7728.4423.23
      Medical1.5543.526.5619.815.152.9222.1321.68
      Remote sensing0.8336.337.268.736.873.5316.2413.51
    Tools

    Get Citation

    Copy Citation Text

    Yuxuan Liu, Li Zhang, Zhongli Fan, Yushan Sun, Haibin Ai, Xueqing Ban. Nonlinear Radiation and Geometric Invariant Matching for Multimodal Imagery[J]. Acta Optica Sinica, 2025, 45(6): 0628010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jul. 17, 2024

    Accepted: Sep. 30, 2024

    Published Online: Mar. 17, 2025

    The Author Email: Fan Zhongli (fanzhongli@whu.edu.cn)

    DOI:10.3788/AOS241321

    Topics