Journal of the Chinese Ceramic Society, Volume. 51, Issue 3, 775(2023)

Persistent Luminescence Mechanism of Sr2MgSi2O7:Eu2+,Dy3+ Long Afterglow Material Based on First-Principles Calculations

YANG Xiaoyu1,*... WANG Xiangyu2, CAO Xuejuan3, TANG Boming2 and YUAN Ying2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] HAI O, PEI M K, YANG E L, et al. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts[J]. J Alloys Compd, 2021, 866: 158752.

    [2] [2] HAI O, ZHANG Z H, REN Q, et al. The preparation and functional studies of the porous long afterglow luminescent materials[J]. Dyes Pigm, 2018, 156: 160-166.

    [6] [6] LI P P, HUA Y J, YE R G, et al. SrAl2O4 crystallite embedded inorganic medium with super-long persistent luminescence, thermoluminescence, and photostimulable luminescence for smart optical information storage[J]. Photonics Res, 2022, 10: 381-388.

    [7] [7] LI P P, TIAN Y, HUANG F F, et al. Highly efficient photostimulated luminescence of Pb2+ doped SrAl2O4:Eu2+,Dy3+ borate glass for long-term stable optical information storage[J]. J Eur Ceram Soc, 2022, 42: 5065-5073.

    [8] [8] SMET P F, BOTTERMAN J, EECKHOUT K V, et al. Persistent luminescence in nitride and oxynitride phosphors: A review[J]. Opt Mater, 2014, 36: 1913-1919.

    [9] [9] ZHUANG Y X, KATAYAMA Y, UEDA J, et al. A brief review on red to near-infrared persistent luminescence in transition-metal- activated phosphors[J]. Opt Mater, 2014, 36: 1907-1912.

    [10] [10] HU R, ZHANG Y, ZHAO Y, et al. UV-Vis-NIR broadband- photostimulated luminescence of LiTaO3:Bi3+ long-persistent phosphor and the optical storage properties[J]. Chem Eng J, 2020, 392: 124807.

    [11] [11] XUE F H, HU Y H, CHEN L, et al. A novel rare-earth free red long-persistent phosphor: Mg2GeO4:Mn4+[J]. Ceram Int, 2017, 43: 15141-15145.

    [12] [12] KITAGAWA Y, YUKIHARA E G, TANABE S. Development of Ce3+ and Li+ co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry[J]. J Lumin, 2021, 232: 117847.

    [14] [14] HAI O, YANG E L, REN Q, et al. Enhancement of the persistent luminescence of Sr2MgSi2O7:Eu2+,Dy3+ by Cu nanoparticles[J]. J Lumin, 2020, 220: 116965.

    [15] [15] HU X W, YANG H, GUO T T, et al. Preparation and properties of Eu and Dy co-doped strontium aluminate long afterglow nanomaterials[J]. Ceram Int, 2018, 44: 7535-7544.

    [16] [16] XIE T, GUO H X, ZHANG J Y, et al. Effects of oxygen vacancies on luminescent properties of green long-lasting phosphorescent (LLP) material α-Zn3(PO4)2:Mn2+,K+[J]. J Lumin, 2016, 170: 150-154.

    [17] [17] CUI T T, MA P C, SHENG Y, et al. Preparation of CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ long afterglow luminescent materials using oil shale ash[J]. Opt Mater, 2017, 67: 84-90.

    [18] [18] FU X Y, ZHENG S H, MENG Y F, et al. Long afterglow yellow luminescence from Pr3+ doped SrSc2O4[J]. J Rare Earths, 2022, 40: 567-571.

    [19] [19] YE K, YANG X L, XIAO S G. Improving red afterglow properties of CaZnGe2O6:Mn2+ by co-doping Bi3+[J]. Optik, 2021, 246: 167799.

    [20] [20] ZHU X Q, MA X, ALI R N, et al. A novel and efficient method for the synthesis of strong fluorescence and long afterglow BPO4 phosphors[J]. Ceram Int, 2022, 48: 8209-8215.

    [22] [22] HAI O, REN Q, WU X L, et al. Insights into the element gradient in the grain and luminescence mechanism of the long afterglow material Sr2MgSi2O7:Eu2+,Dy3+[J]. J Alloys Compd, 2019, 779: 892-899.

    [25] [25] VAN DER HEGGEN D, VANDENBERGHE D, MOAYED N K, et al. The almost hidden role of deep traps when measuring afterglow and thermoluminescence of persistent phosphors[J]. J Lumin, 2020, 226: 117496.

    [26] [26] ASAMI K, UEDA J, TANABE S. Long persistent luminescence and blue photochromism in Eu2+-Dy3+ co-doped barium silicate glass ceramic phosphor[J]. J Lumin, 2019, 207: 246-250.

    [30] [30] DUAN H, DONG Y Z, HUANG Y, et al. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor[J]. Phys Lett A, 2016, 380: 1056-1062.

    [31] [31] ZHENG L B, ZHU Y N, PANG Z Y, et al. Luminescence properties of composite material Sr2MgSi2O7:Eu2+,Dy3+/light conversion agent with multilayer structure[J]. J Rare Earths, 2022, 40: 34-40.

    [32] [32] ZOU L, SHI Z L, ZHANG X F, et al. Enhanced long afterglow luminescence of Sr2MgSi2O7: Eu2+, Dy3+ by NH4Cl[J]. Inorg Chem Commun, 2022, 146: 110151.

    [33] [33] HAO R, XIONG C W, LI H S, et al. Optimization of persistent luminescence via dopant concentration in LiNbO3[J]. J Lumin, 2022, 244: 118753.

    Tools

    Get Citation

    Copy Citation Text

    YANG Xiaoyu, WANG Xiangyu, CAO Xuejuan, TANG Boming, YUAN Ying. Persistent Luminescence Mechanism of Sr2MgSi2O7:Eu2+,Dy3+ Long Afterglow Material Based on First-Principles Calculations[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 775

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 25, 2022

    Accepted: --

    Published Online: Apr. 10, 2023

    The Author Email: Xiaoyu YANG (yxyss868@cqjtu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics