Photonics Research, Volume. 10, Issue 4, 1127(2022)

240 Gb/s optical transmission based on an ultrafast silicon microring modulator

Yuguang Zhang1,2、†, Hongguang Zhang2、†, Junwen Zhang3、†, Jia Liu2, Lei Wang1,2, Daigao Chen1,2, Nan Chi3, Xi Xiao1,2,4、*, and Shaohua Yu1,2,4
Author Affiliations
  • 1State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 2National Information Optoelectronics Innovation Center, Wuhan 430074, China
  • 3Key Laboratory of Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 4Peng Cheng Laboratory, Shenzhen 518055, China
  • show less
    References(40)

    [1] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [2] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine. Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).

    [3] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photon. Res., 6, 109-116(2018).

    [4] H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Hu, B. Zhang, L. Wang, X. Xiao, N. Qi, S. Yu. 800  Gb/s transmission over 1  km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res., 8, 1776-1782(2020).

    [5] M. S. Alam, X. Li, M. Jacques, Z. Xing, A. Samani, E. El-Fiky, P. Koh, D. V. Plant. Net 220  Gbps/λ IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZM. J. Lightwave Technol., 39, 4270-4278(2021).

    [6] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [7] Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, T. Fujii, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, M. Ishikawa. Ultra-high bandwidth InP IQ modulator for beyond 100-GBd transmission. Optical Fiber Communications Conference and Exhibition (OFC), M2F.2(2019).

    [8] Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, M. Kohtoku. Over 67  GHz bandwidth and 1.5  V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J. Lightwave Technol., 35, 1450-1455(2016).

    [9] S. Yamaoka, N. P. Diamantopoulos, H. Nishi, R. Nakao, T. Fujii, K. Takeda, T. Hiraki, T. Tsurugaya, S. Kanazawa, H. Tanobe, T. Kakitsuka, T. Tsuchizawa, F. Koyama, S. Matsuo. Directly modulated membrane lasers with 108  GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat. Photonics, 15, 28-35(2021).

    [10] L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, J. Leuthold. 100  GHz silicon–organic hybrid modulator. Light Sci. Appl., 3, e173(2014).

    [11] G.-W. Lu, J. Hong, F. Qiu, A. M. Spring, T. Kashino, J. Oshima, M. Ozawa, H. Nawata, S. Yokoyama. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun., 11, 4224(2020).

    [12] W. Heni, Y. Fedoryshyn, B. Baeuerle, A. Josten, C. B. Hoessbacher, A. Messner, C. Haffner, T. Watanabe, Y. Salamin, U. Koch, D. L. Elder, L. R. Dalton, J. Leuthold. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun., 10, 1694(2019).

    [13] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, J. Leuthold. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics, 9, 525-528(2015).

    [14] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [15] Y. Zhang, M. Xu, H. Zhang, M. Li, J. Jian, M. He, L. Chen, L. Wang, X. Cai, X. Xiao, S. Yu. 220  Gb/s optical PAM-4 modulation based on lithium niobate on insulator modulator. 45th European Conference on Optical Communication (ECOC), PD2.6(2019).

    [16] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [17] S. Sun, M. He, M. Xu, S. Gao, Z. Chen, X. Zhang, Z. Ruan, X. Wu, L. Zhou, L. Liu, C. Lu, C. Guo, L. Liu, S. Yu, X. Cai. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photon. Res., 8, 1958-1963(2020).

    [18] L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. Vries, P. Regreny, D. Van Thourhout, R. Baets, G. Morthier. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photonics, 4, 182-187(2010).

    [19] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [20] J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, W.-Y. Choi. Verilog-A behavioral model for resonance- modulated silicon micro-ring modulator. Opt. Express, 23, 8762-8772(2015).

    [21] X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu. 25  Gb/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt. Express, 20, 2507-2515(2012).

    [22] X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, Y. Yu. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photon. Technol. Lett., 24, 1712-1714(2012).

    [23] M. Sakib, P. Liao, C. Ma, R. Kumar, D. Huang, G. Su, X. Wu, S. Fathololoumi, H. Rong. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100  Gbaud. Conference on Lasers and Electro-Optics (CLEO), SF1C.3(2021).

    [24] Y. Ban, J. Verbist, M. Vanhoecke, J. Bauwelinck, P. Verheyen, S. Lardenois, M. Pantouvaki, J. Van Campenhout. Low-voltage 60  Gb/s NRZ and 100  Gb/s PAM-4 O-band silicon ring modulator. IEEE Optical Interconnects Conference(2019).

    [25] Y. Tong, Z. Hu, X. Wu, S. Liu, L. Chang, A. Netherton, C.-K. Chan, J. E. Bowers, H. K. Tsang. An experimental demonstration of 160-Gb/s PAM-4 using a silicon micro-ring modulator. IEEE Photon. Technol. Lett., 32, 125-128(2019).

    [26] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcıa, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).

    [27] L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, A. E. Willner. Silicon-based microring resonator modulators for intensity modulation. IEEE J. Sel. Top. Quantum Electron., 16, 149-158(2010).

    [28] J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, H. Rong. A 128  Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).

    [29] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express, 17, 22484-22490(2009).

    [30] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 19, 95-113(2013).

    [31] M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, W. Y. Choi. A linear equivalent circuit model for depletion-type silicon microring modulators. IEEE Trans. Electron Devices, 64, 1140-1145(2017).

    [32] M. Pantouvaki, H. Yu, M. Rakowski, P. Christie, P. Verheyen, G. Lepage, N. V. Hoovels, P. Absil, J. V. Campenhout. Comparison of silicon ring modulators with interdigitated and lateral PN junctions. IEEE J. Sel. Top. Quantum Electron., 19, 7900308(2013).

    [33] Y. Zhang, H. Zhang, M. Li, P. Feng, L. Wang, X. Xiao, S. Yu. 200  Gb/s optical PAM4 modulation based on silicon microring modulator. European Conference on Optical Communications (ECOC), Th3A-1(2020).

    [34] J. Zhang, J. Yu, N. Chi, H.-C. Chien. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers. Opt. Express, 22, 20515-20529(2014).

    [35] N. Chi, Y. Zhao, M. Shi, P. Zou, X. Lu. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt. Express, 26, 26700-26712(2018).

    [36] Z. Jia, Y. Cai, H.-C. Chien, J. Yu. Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output. Opt. Express, 22, 6047-6059(2014).

    [37] Q. Xu, B. Schmidt, J. Shakya, M. Lipson. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express, 14, 9431-9436(2006).

    [38] P. Dong, C. Xie, L. Chen, N. K. Fontaine, Y.-K. Chen. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett., 37, 1178-1180(2012).

    [39] D. Liang, J. E. Bowers. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manuf., 2, 59-83(2021).

    [40] N. Kaneda, Z. Zhu, C. Chuang, A. Mahadevan, B. Farah, K. Bergman, D. Van Veen, V. Houtsma. FPGA implementation of deep neural network based equalizers for high-speed PON. Optical Fiber Communications Conference and Exhibition (OFC), T4D.2(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yuguang Zhang, Hongguang Zhang, Junwen Zhang, Jia Liu, Lei Wang, Daigao Chen, Nan Chi, Xi Xiao, Shaohua Yu. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator[J]. Photonics Research, 2022, 10(4): 1127

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Aug. 30, 2021

    Accepted: Feb. 24, 2022

    Published Online: Mar. 28, 2022

    The Author Email: Xi Xiao (xxiao@wri.com.cn)

    DOI:10.1364/PRJ.441791

    Topics