Journal of Inorganic Materials, Volume. 35, Issue 6, 633(2020)
[2] G SUCHANECK, G GERLACH. Lead-free relaxor ferroelectrics for electrocaloric cooling. Materials Today: Proceedings, 3, 622-631(2016).
[3] T CORREIA, Q ZHANG. Electrocaloric Materials: New Generation of Coolers. Berlin: Spinger, 1-3(2014).
[7] Z ZHANG G, Q LI, M GU H et al. Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration. Adv. Mater., 27, 1450-1454(2015).
[11] L KLEIN, M APARICIO, A JITIANU. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. 2nd ed. Springer: Switzerland, 667-693(2018).
[12] Y BAI, D WEI, L J QIAO. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation. Appl. Phys. Lett, 107(2015).
[13] J YE H, S QIAN X, Y JEONG D et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett, 105(2014).
[14] F LI, R CHEN G, X LIU et al. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3- 0.06BaTiO3 ceramics. Appl. Phys. Lett, 110(2017).
[17] Z ZHANG G, X WENG L, Y HU Z et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Adv. Mater., 31(2019).
[18] P ZHUO F, Q LI, H GAO J et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal. Appl. Phys. Lett, 108(2016).
[19] Z KUTNJAK, B ROŽIČ, R PIRC. Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley& Sons), 1-19(2015).
[20] Y LIU, F SCOTT J, B DKHIL. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev, 3(2016).
[23] Y LIU, F SCOTT J, B DKHIL. Some strategies for improving caloric responses with ferroelectrics. APL Mater, 4(2016).
[32] Y BAI, T LI J, Q QIN S et al. Ferroelectric ceramics for high-efficient solid-state refrigeration. Advanced Ceramics, 39, 369-389(2018).
[33] W THOMSON, L KELVIN. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Phil. Mag., 5, 4-27(1878).
[34] P KOBEKO, J KURTSCHATOV. Dielektrische eigenschaften der seignettesalzkristalle. Z. Phys., 66, 192-205(1930).
[35] F HAUTZENLAUB J. Electrocaloric and Dielectric Behavior of Potassium Dihydrogen Phosphate. Massachusetts: Massachusetts Institute of Technology Doctoral Dissertation(1943).
[45] J PERÄNTIE, N TAILOR H, J HAGBERG et al. Electrocaloric properties in relaxor ferroelectric (1-
[46] P GENG W, Y LIU, J MENG X. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Adv. Mater., 27(2015).
[47] Y BAI, P ZHENG G, K DING et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J. Appl. Phys., 110(2011).
[52] Y BAI, X HAN, C ZHENG X et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci. Rep., 3(2013).
[54] U PLAZNIK, A KITANOVSKI, B ROŽIČ et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett, 106(2015).
[55] R CHUKKA, S VANDRANGI, S SHANNIGRAHI et al. An electrocaloric device demonstrator for solid-state cooling. EPL-Europhys. Lett, 103(2013).
[56] T ZHANG, S QIAN X, M GU H et al. An electrocaloric refrigerator with direct solid to solid regeneration. Appl. Phys. Lett, 110(2017).
[60] Y Li X. Electrocaloric Effect in Relaxor Ferroelectric Materials. Pennsylvania: The Pennsylvania State University Doctoral Dissertation(2013).
[62] M SANLIALP, C MOLIN, V SHVARTSMAN V et al. Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans. Ultrason. Ferroelectrics, 63, 1690-1696(2016).
[64] T LI J, Y BAI, Q QIN S. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics. Appl. Phys. Lett, 109(2016).
[65] Z ZHOU Y, R LIN Q, F LIU W et al. Compositional dependence of electrocaloric effect in lead-free (1-
[66] C ROSE M, E COHEN R. Giant electrocaloric effect around
[68] X NIE, G YAN S, F CHEN X et al. Correlation between electrocaloric response and polarization behavior: slim-like and square-like hysteresis loop. Phys. Status Solidi A, 215(2018).
[73] T KARAKI, T KATAYAMA, K YOSHIDA et al. Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive. Jpn. J. Appl. Phys., 52(2013).
[75] R CHUKKA, W CHEAH J, H CHEN Z et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Appl. Phys. Lett, 98(2011).
[76] D ZHANG T, L LI W, P CAO W et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Appl. Phys. Lett., 108(2016).
[78] T GOTTSCHALL, D BENKE, M FRIES et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration. Adv. Funct. Mater., 27(2017).
[81] K KIM H, G SHI F. Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE Trans. Electr. In., 8, 248-252(2001).
[82] G CHEN, W ZHAO J, T LI S et al. Origin of thickness dependent dc electrical breakdown in dielectrics. Appl. Phys. Lett, 100(2012).
[85] M MARATHE, A GRÜNEBOHM, T NISHIMATSU et al. First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys. Rev. B, 93(2016).
[86] N NOVAK, R PIRC, Z KUTNJAK. Impact of critical point on piezoelectric and electrocaloric response in barium titanate. Phys. Rev. B, 87(2013).
[87] T NISHIMATSU, A BARR J, P BECKMAN S. Direct molecular dynamics simulation of electrocaloric effect BaTiO3. J. Phys. Soc. Jpn., 82(2013).
[91] G YAO Y, C ZHOU, C LYU D et al. Large piezoelectricity and dielectric permittivity in BaTiO3-
[93] X ZHANG, L WU, S GAO et al. Large electrocaloric effect in Ba(Ti1-
[94] M SANLIALP, D LUO Z, V SHVARTSMAN V et al. Direct measurement of electrocaloric effect in lead-free Ba(Sn
[95] M HIROSHI. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr, Ti)O3 and (Ba, Sr)TiO3 ceramics. Jpn. J. Appl. Phys., 56(2017).
[97] D LUO Z, W ZHANG D, L YANG et al. Enhanced electrocaloric effect in lead-free BaTi1-
[98] F LIU W, B REN X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett., 103(2009).
[100] C TSAI C, H CHAO W, Y CHU S et al. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature. AIP Advances, 6(2016).
[109] I PONOMAREVA, S LISENKOV. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys. Rev. Lett., 108(2012).
[112] F LE GOUPIL, J BENNETT, K AXELSSON A et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett, 107(2015).
[113] F LE GOUPIL, N M ALFORD. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics. APL Mater., 4(2016).
[114] F LE GOUPIL, R MCKINNON, V KOVAL et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Sci. Rep., 6(2016).
[122] J KORUZA, B ROŽIČ, G CORDOYIANNIS et al. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl. Phys. Lett., 106(2015).
[125] J WANG X, G WU J, B DKHIL et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett., 110(2017).
[126] R KUMAR, S SINGH. Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1-
[128] H TAO, L YANG J, X LYU et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics. J. Am. Ceram. Soc., 102, 2578-2586(2019).
Get Citation
Copy Citation Text
Ying YU, Hongliang DU, Zetian YANG, Li JIN, Shaobo QU.
Category: REVIEW
Received: Jun. 25, 2019
Accepted: --
Published Online: Mar. 2, 2021
The Author Email: DU Hongliang (duhongliang@126.com)