Chinese Journal of Quantum Electronics, Volume. 41, Issue 4, 626(2024)

Research on quantum circuit mapping based on dynamic look‑ahead depth

CAO Kexin... CHEN Xinyu, ZHU Mingqiang, LI Xiang, CHENG Xueyun and GUAN Zhijin |Show fewer author(s)
Author Affiliations
  • School of Information Science and Technology, Nantong University, Nantong 226019, China
  • show less
    Figures & Tables(16)
    NOT gate
    CNOT gate
    SWAP gate
    Quantum circuit
    Topological graph
    Quantum circuit
    (a) Bridge gate; (b) Circuit inserted SWAP gate; (c) Circuit inserted bridge gate
    Quantum circuit
    Insert the SWAP gate when the look-ahead depth is 3
    Insert the SWAP gate when the look-ahead depth is 4
    CNOT gates cost comparison
    • Table 0. [in Chinese]

      View table
      View in Article

      Table 0. [in Chinese]

      算法2: DHA算法

        输入:

      量子线路, DAG图, 耦合图, 距离矩阵N, 当前映射πc, 第一层F, 拓展层E。

        输出:

      新的映射πn, 插入之后的量子门gadd

        Step1:

      初始化scoreeffect列表为空列表, 找到候选的插入路径, 存放在 swap_candidate_list 里。

        Step2:

      插入SWAP门后, 得到临时映射πtemp, 计算交换成本, Hbasic=0, Hbasic=Hbasic+N (gate,πtemp)

        Step3:

      对E层计算成本, Hextended=0, Hextended=Hextended+N (gate,πtemp), 计算SWAP门对拓展层的整体影响, 并加入effect列表, effectcost=effectcost+N (gate,πc) - N (gate,πtemp)

        Step4:

      计算最终成本, 加入score列表, 找到代价最小的插入SWAP门score: swapmin

        Step5:

      如果插入swapmin后, 线路变成可执行, 计算effect[swapmin], 如果effectswapmin<0并且S=2, 则插入桥门, 否则, 插入swapmin

        Step6:

      返回πn, gadd

    • Table 0. [in Chinese]

      View table
      View in Article

      Table 0. [in Chinese]

      算法1: 前瞻深度优化算法

      输入: 初始前瞻深度 Depth_initial

      输出: 较优前瞻深度Depth_best

      1: TInitial temperature, SDepth_initial, LIterations // 初始化参数

      2: While T>T_min do

      3: For k=0 to L do // k从0开始到L, 随机生成一个新解

      4: S random (S);

      5: T=C(S')-C(S);

      6: If T<0 then

      7: SS' // 如果T<0, 接受新的解

      8: Else If exp(-T/T)>random(0,1) then //否则以一定概率接受新解

      9: SS'

      10: End

      11: End

      12: TT * r

      13: End

      14: Return S

    • Table 1. Additional gates on ibmq_almaden for improved cost function

      View table
      View in Article

      Table 1. Additional gates on ibmq_almaden for improved cost function

      Original CircuitHADHAComparison
      namengallggg/%
      ising_model_10104801111110.00
      ising_model_13136331951921.54
      ising_model_16167862462431.22
      qft_101020021617419.44
      qft_1616512603606-0.50
      adr4_1971334394608361221.61
      radd_250133213397536069.28
      z4_268113073381636005.66
      sym6_145143888172817280.00
      misex1_241154813540951095.55
      rd73_252105321387334929.84
      cycle10_2_11012605061926792-9.69
      square_root_71576306741490227.28
      sqn_25810102237788671113.83
      rd84_253121365817124156758.64
      co14_215151793617787170823.96
      sym9_1931034881372603194114.28
      9symml_1951134881372603194114.28
    • Table 2. Additional gates on ibmq_almaden for the best prospective depth

      View table
      View in Article

      Table 2. Additional gates on ibmq_almaden for the best prospective depth

      Original CircuitHADepthDFMComparison
      namengallgggg/%
      ising_model_101048011198721.62
      ising_model_1313633195813829.23
      ising_model_1616786246815935.37
      qft_1010200216512044.44
      qft_1616512603439334.83
      adr4_19713343946088197757.10
      radd_25013321339755168657.58
      z4_26811307338163219642.45
      sym6_1451438881728815729.03
      misex1_24115481354094225058.40
      rd73_25210532138733298522.93
      cycle10_2_11012605061923375639.34
      square_root_715763067413495026.57
      sqn_258101022377883491436.90
      rd84_2531213658171245697859.25
      co14_21515179361778751018242.76
      sym9_19310348813726021766152.60
      9symml_19511348813726051770052.50
    • Table 3. Additional gates on ibmq_almaden for comprehensive consideration

      View table
      View in Article

      Table 3. Additional gates on ibmq_almaden for comprehensive consideration

      Original CircuitHADepthOptimalComparison
      namengallgggg/%
      ising_model_101048011198721.62
      ising_model_1313633195813530.77
      ising_model_1616786246815935.37
      qft_1010200216512044.44
      qft_1616512603438136.82
      adr4_19713343946088197757.10
      radd_25013321339755168657.58
      z4_26811307338163144062.26
      sym6_14514388817288106538.37
      misex1_24115481354094225058.40
      rd73_25210532138733247536.10
      cycle10_2_11012605061923296452.13
      namengallgggg/%
      square_root_715763067413402940.23
      sqn_258101022377883449442.30
      rd84_2531213658171245697859.25
      co14_21515179361778751018242.76
      sym9_19310348813726021766152.60
      9symml_19511348813726051770052.50
    Tools

    Get Citation

    Copy Citation Text

    Kexin CAO, Xinyu CHEN, Mingqiang ZHU, Xiang LI, Xueyun CHENG, Zhijin GUAN. Research on quantum circuit mapping based on dynamic look‑ahead depth[J]. Chinese Journal of Quantum Electronics, 2024, 41(4): 626

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 11, 2022

    Accepted: --

    Published Online: Jan. 8, 2025

    The Author Email:

    DOI:10.3969/j.issn.1007-5461.2024.04.007

    Topics