Acta Optica Sinica, Volume. 43, Issue 1, 0111001(2023)

Quantitative Photoacoustic Endoscopic Imaging for Correcting Light Fluence Variation

Qi Meng1, Zheng Sun1,2、*, Yingsa Hou1, and Meichen Sun1
Author Affiliations
  • 1Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
  • 2Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, Hebei, China
  • show less
    References(47)

    [1] Li J, Li S, Chen J J et al. Progress and biomedical application of non-contact photoacoustic imaging[J]. Chinese Journal of Lasers, 48, 1907001(2021).

    [2] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [3] Sun Z, Han D D, Yuan Y. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal[J]. Computers in Biology and Medicine, 76, 60-68(2016).

    [4] Wang K, Anastasio M A. A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry[J]. Physics in Medicine and Biology, 57, N493-N499(2012).

    [5] Zhang C, Wang Y Y. Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study[J]. Journal of the Optical Society of America A, 25, 2436-2443(2008).

    [6] Wang Y, Wang R K. Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation[J]. Physics in Medicine and Biology, 53, 6167-6177(2008).

    [7] Cox B T, Laufer J G, Arridge S R et al. Quantitative spectroscopic photoacoustic imaging: a review[J]. Journal of Biomedical Optics, 17, 061202(2012).

    [8] Mohajerani P, Tzoumas S, Rosenthal A et al. Optical and optoacoustic model-based tomography: theory and current challenges for deep tissue imaging of optical contrast[J]. IEEE Signal Processing Magazine, 32, 88-100(2015).

    [9] Zheng S, Lan Z. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging[J]. Computers in Biology and Medicine, 97, 37-49(2018).

    [10] Javaherian A, Holman S. Direct quantitative photoacoustic tomography for realistic acoustic media[J]. Inverse Problems, 35, 084004(2019).

    [11] Leino A A, Lunttila T, Mozumder M et al. Perturbation Monte Carlo method for quantitative photoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 39, 2985-2995(2020).

    [12] Meng Q, Sun Z. Solutions to inhomogeneous and unstable illumination in biological photoacoustic tomography[J]. Chinese Optics, 14, 307-319(2021).

    [13] Lou Y, Wang K, Oraevsky A A et al. Impact of nonstationary optical illumination on image reconstruction in optoacoustic tomography[J]. Journal of the Optical Society of America A, 33, 2333-2347(2016).

    [14] Mc Larney B, Rebling J, Chen Z Y et al. Uniform light delivery in volumetric optoacoustic tomography[J]. Journal of Biophotonics, 12, e201800387(2019).

    [15] Yu J, Schuman J S, Lee J K et al. A light illumination enhancement device for photoacoustic imaging: in vivo animal study[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64, 1205-1211(2017).

    [16] Li M C, Lan B X, Liu W et al. Internal-illumination photoacoustic computed tomography[J]. Journal of Biomedical Optics, 23, 030506(2018).

    [17] Rosenthal A, Razansky D, Ntziachristos V. Quantitative optoacoustic signal extraction using sparse signal representation[J]. IEEE Transactions on Medical Imaging, 28, 1997-2006(2009).

    [18] Bu S H, Liu Z B, Shiina T et al. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography[J]. IEEE Transactions on Biomedical Engineering, 59, 1354-1363(2012).

    [19] Nykänen O, Pulkkinen A, Tarvainen T. Quantitative photoacoustic tomography augmented with surface light measurements[J]. Biomedical Optics Express, 8, 4380-4395(2017).

    [20] Deán-Ben X L, Stiel A C, Jiang Y Y et al. Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography[J]. Optics Letters, 40, 4691-4694(2015).

    [21] Zhou X W, Akhlaghi N, Wear K A et al. Evaluation of fluence correction algorithms in multispectral photoacoustic imaging[J]. Photoacoustics, 19, 100181(2020).

    [22] Hussain A, Petersen W, Staley J et al. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics[J]. Optics Letters, 41, 1720-1723(2016).

    [23] Daoudi K, Hussain A, Hondebrink E et al. Correcting photoacoustic signals for fluence variations using acousto-optic modulation[J]. Optics Express, 20, 14117-14129(2012).

    [24] Zhao L Y, Yang M, Jiang Y X et al. Optical fluence compensation for handheld photoacoustic probe: an in vivo human study case[J]. Journal of Innovative Optical Health Sciences, 10, 1740002(2017).

    [25] Jin H R, Zhang R C, Liu S Y et al. A single sensor dual-modality photoacoustic fusion imaging for compensation of light fluence variation[J]. IEEE Transactions on Biomedical Engineering, 66, 1810-1813(2019).

    [26] Bauer A Q, Nothdurft R E, Culver J P et al. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography[J]. Journal of Biomedical Optics, 16, 096016(2011).

    [27] Candès E J, Demanet L. The curvelet representation of wave propagators is optimally sparse[J]. Communications on Pure and Applied Mathematics, 58, 1472-1528(2005).

    [28] Grohs P, Keiper S, Kutyniok G et al. Cartoon approximation with α‑curvelets[J]. Journal of Fourier Analysis and Applications, 22, 1235-1293(2016).

    [29] Zwartjes P M, Gisolf A. Fourier reconstruction with sparse inversion[J]. Geophysical Prospecting, 55, 199-221(2007).

    [30] Tian J P, Liu X J, Liu Y P et al. Multi-candidate set of generalized orthogonal matching pursuit algorithm[J]. Journal of Applied Sciences, 35, 233-243(2017).

    [31] Zhang F C, Li C H. Matching pursuit time-frequency analysis of non-stationary seismic signals[J]. Geophysical and Geochemical Exploration, 35, 546-552(2011).

    [32] Huang S S, Zhu J B. Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP[J]. Inverse Problems, 27, 035003(2011).

    [33] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 86, 549-571(2006).

    [34] Huang J J, Xu Y H, Zhu P et al. An improved reconstruction algorithm based on multi-candidate orthogonal matching pursuit algorithm[C], 564-568(2014).

    [35] Chen R, Xie S S, Chen Y J et al. Optical parameters of Chinese blood[J]. Journal of Optoelectronics·Laser, 13, 92-93, 97(2002).

    [36] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).

    [37] Gao S K[M]. Medical imaging system, 88-95(2010).

    [38] Treeby B E, Cox B T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of Biomedical Optics, 15, 021314(2010).

    [39] Zhuang T G[M]. Principle and algorithm of CT, 11-12(1992).

    [40] Jana C, Karaaslan F. Dice and Jaccard similarity measures based on expected intervals of trapezoidal neutrosophic fuzzy numbers and their applications in multicriteria decision making[M]. Smarandache F, Abdel-Basset M. Optimization theory based on Neutrosophic and Plithogenic sets, 261-287(2020).

    [41] Ye J. Cosine similarity measures for intuitionistic fuzzy sets and their applications[J]. Mathematical and Computer Modelling, 53, 91-97(2011).

    [42] Long G, Xiao L, Chen X Q. Overview of the applications of curvelet transform in image processing[J]. Journal of Computer Research and Development, 42, 1331-1337(2005).

    [43] He Y, Liao T Y, Wu J W et al. Design of photoacoustic microscope based on transparent ultrasonic transducer[J]. Chinese Journal of Lasers, 49, 0307001(2022).

    [44] Yang C C, Lan H R, Gao F et al. Review of deep learning for photoacoustic imaging[J]. Photoacoustics, 21, 100215(2021).

    [45] Shen K, Liu S D, Shi J H et al. Dual-domain neural network for sparse-view photoacoustic image reconstruction[J]. Chinese Journal of Lasers, 49, 0507208(2022).

    [46] Yang C C, Lan H R, Zhong H T et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network[C], 741-744(2019).

    [47] Li J, Wang C, Chen T T et al. Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data[J]. Optica, 9, 32-41(2022).

    Tools

    Get Citation

    Copy Citation Text

    Qi Meng, Zheng Sun, Yingsa Hou, Meichen Sun. Quantitative Photoacoustic Endoscopic Imaging for Correcting Light Fluence Variation[J]. Acta Optica Sinica, 2023, 43(1): 0111001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jun. 1, 2022

    Accepted: Jun. 29, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Sun Zheng (sunzheng@ncepu.edu.cn)

    DOI:10.3788/AOS221235

    Topics