Journal of Inorganic Materials, Volume. 36, Issue 5, 552(2021)
[1] HONG Y, FAN H, LI B et al. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics[J]. Materials Science & Engineering R, 70, 225-242(2010).
[2] DOROZHKIN S V. Calcium orthophosphates in nature[J]. Biology and Medicine Materials, 2, 399-498(2009).
[3] NASIRI-TABRIZI B, HONARMANDI P, EBRAHIMI-KAHRIZSANGI R et al. Synthesis of nanosize single-crystal hydroxyapatite
[6] FANG Z, FENG Q, TAN R.
[7] PROKOPIEV O, SEVOSTIANOV I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature[J]. Materials Science & Engineering A, 431, 218-227(2006).
[10] RICE R W, WU C C, BOICHELT F. Hardness-grain-size relations in ceramics[J]. Journal of the American Ceramic Society, 77, 2539-2553(1994).
[11] MOSHTAGHIOUN B M, GOMEZ-GARCIA D, DOMINGUEZ- RODRIGUEZ A et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics[J]. Journal of the European Ceramic Society, 36, 1829-1834(2016).
[13] KIM B N, PRAJATELISTIA E, HAN Y H et al. Transparent hydroxyapatite ceramics consolidated by spark plasma sintering[J]. Scripta Materialia, 69, 366-369(2013).
[14] GUO X, XIAO P, JING L et al. Fabrication of nanostructured hydroxyapatite
[15] RAMESH S, TAN C Y, BHADURI S B et al. Rapid densification of nanocrystalline hydroxyapatite for biomedical applications[J]. Ceramics International, 33, 1363-1367(2007).
[16] VELJOVIC D, JOKIC B, PETROVIĆ R et al. Processing of dense nanostructured HAP ceramics by sintering and hot pressing[J]. Ceramics International, 35, 1407-1413(2009).
[17] WANG J, SHAW L L. Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering[J]. Scripta Materialia, 63, 593-596(2010).
[19] LIN K, CHEN L, CHANG J. Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties
[20] LUKIĆ M J, ŠKAPIN S D, MARKOVIĆ S et al. Processing route to fully dense nanostructured HAp bioceramics: from powder synthesis to sintering[J]. Journal of the American Ceramic Society, 95, 3394-3402(2012).
[21] THUAULT A, SAVARY E, HORNEZ J C et al. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity[J]. Journal of the European Ceramic Society, 34, 1865-1871(2014).
[23] LIU D, WU Y, WU H et al. Effect of process parameters on the microstructure and property of hydroxyapatite precursor powders and resultant sintered bodies[J]. International Journal of Applied Ceramic Technology, 16, 444-454(2018).
[24] SONG J, YONG L, YING Z et al. Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies[J]. Materials Science & Engineering A, 528, 5421-5427(2011).
[25] LANDI E, TAMPIERI A, CELOTTI G et al. Densification behaviour and mechanisms of synthetic hydroxyapatites[J]. Journal of the European Ceramic Society, 20, 2377-2387(2000).
[26] WEINER S, BAR-YOSEF O. States of preservation of bones from prehistoric sites in the Near East: a survey[J]. Journal of Archaeological Science, 17, 187-196(1990).
[29] MAZAHERI M, HAGHIGHATZADEH M, ZAHEDI A M et al. Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics[J]. Journal of Alloys & Compounds, 471, 180-184(2009).
[31] PANG Y X, BAO X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles[J]. Journal of the European Ceramic Society, 23, 1697-1704(2003).
[33] TSENG Y H, KUO C S, LI Y Y et al. Polymer-assisted synthesis of hydroxyapatite nanoparticle[J]. Materials Science and Engineering: C, 29, 819-822(2009).
[34] LI H, XUE F, WAN X et al. Polyethylene glycol-assisted preparation of beta-tricalcium phosphate by direct precipitation method[J]. Powder Technology, 301, 255-260(2016).
[35] AKAO M, AOKI H, KATO K. Mechanical properties of sintered hydroxyapatite for prosthetic applications[J]. Journal of Materials Science, 16, 809-812(1981).
[36] ARIFVIANTO B, MAHARDIKA M, DEWO P et al. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L[J]. Materials Chemistry and Physics, 125, 418-426(2011).
[41] YAO C, PERLA V, MCKENZIE J L et al. Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion[J]. Journal of Biomedical Nanotechnology, 1, 68-73(2005).
Get Citation
Copy Citation Text
Yonghao WU, Xiangfeng LI, Xiangdong ZHU, Xingdong ZHANG.
Category: RESEARCH LETTER
Received: Jul. 14, 2020
Accepted: --
Published Online: Nov. 25, 2021
The Author Email: Xiangdong ZHU (zhu_xd1973@scu.edu.cn)