Chinese Optics Letters, Volume. 20, Issue 4, 041902(2022)

Magnetic-field-induced deflection of nonlocal light bullets in a Rydberg atomic gas

Xiujia Dong1, Yao Ding1, Zhengyang Bai1、*, and Guoxiang Huang1,2、**
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Shanghai 200062, China
  • 2NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
  • show less
    References(42)

    [1] M. Saffman, T. G. Walker, K. Mϕlmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313(2010).

    [2] J. D. Pritchard, K. J. Weatherill, C. S. Adams. Nonlinear optics using cold Rydberg atoms. Annual Review of Cold Atoms and Molecules, 1, 301(2012).

    [3] O. Firstenberg, C. S. Adams, S. Hofferberth. Nonlinear quantum optics mediated by Rydberg interactions. J. Phys. B, 49, 152003(2016).

    [4] C. Murray, T. Pohl. Quantum and nonlinear optics in strongly interacting atomic ensembles. Advances in Atomic, Molecular, and Optical Physics, 65, 321(2016).

    [5] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, C. S. Adams. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett., 105, 193603(2010).

    [6] S. Sevinçli, N. Henkel, C. Ates, T. Pohl. Nonlocal nonlinear optics in cold Rydberg gases. Phys. Rev. Lett., 107, 153001(2011).

    [7] D. Yan, C. Cui, Y. Liu, L. Song, J. Wu. Normal and abnormal nonlinear electromagnetically induced transparency due to dipole blockade of Rydberg excitation. Phys. Rev. A, 87, 023827(2013).

    [8] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, M. D. Lukin. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett., 107, 133602(2011).

    [9] O. Firstenberg, T. Peyronel, Q. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletić. Attractive photons in a quantum nonlinear medium. Nature, 502, 71(2013).

    [10] D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, C. S. Adams. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett., 110, 103001(2013).

    [11] L. Li, A. Kuzmich. Quantum memory with strong and controllable Rydberg-level interactions. Nat. Commun., 7, 13618(2016).

    [12] D. Tiarks, S. Schmidt, G. Rempe, S. Dürr. Optical π phase shift created with a single-photon pulse. Sci. Adv., 2, e1600036(2016).

    [13] H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A. Jones, C. S. Adams. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nat. Phys., 13, 655(2016).

    [14] Z. Bai, G. Huang. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Opt. Express, 24, 4442(2016).

    [15] H. Wu, Y. Li, Z. Yang, S. Zheng. Quantum signature for laser-driven correlated excitation of Rydberg atoms. Phys. Rev. A, 95, 013842(2017).

    [16] Q. Y. Liang, A. V. Venkatramani, S. H. Cantu, T. L. Nicholson, M. J. Gullans, A. V. Gorshkov, J. D. Thompson, C. Chin, M. D. Lukin, V. Vuletić. Observation of three-photon bound states in a quantum nonlinear medium. Science, 359, 783(2018).

    [17] Z. Bai, W. Li, G. Huang. Stable single light bullets and vortices and their active control in cold Rydberg gases. Optica, 6, 309(2019).

    [18] S. Bai, X. Han, J. Bai, Y. Jiao, J. Zhao, S. Jia, G. Raithel. Cesium nDJ+6S1/2 Rydberg molecules and their permanent electric dipole moments. Phys. Rev. Res, 2, 033525(2020).

    [19] D. Ding, H. Busche, B. Shi, G. Guo, C. S. Adams. Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting Rydberg atoms. Phys. Rev. X, 10, 021023(2020).

    [20] C. Fan, D. Rossini, H. Zhang, J. Wu, M. Artoni, G. C. La Rocca. Discrete time crystal in a finite chain of Rydberg atoms without disorder. Phys. Rev. A, 101, 013417(2020).

    [21] M. Zhou, J. Liu, P. Sun, Z. An, J. Li, X. Bao, J. Pan. Experimental creation of single Rydberg excitations via adiabatic passage. Phys. Rev. A, 102, 013706(2020).

    [22] K. Liao, H. Tu, S. Yang, C. Chen, X. Liu, J. Liang, X. Zhang, H. Yan, S. Zhu. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 101, 053432(2020).

    [23] M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, S. Jia. Quantum superhet based on microwave-dressed Rydberg atoms. Nat. Phys., 16, 911(2020).

    [24] Y. Liu, Y. Sun, Z. Fu, P. Xu, X. Wang, X. He, J. Wang, M. Zhan. Infidelity induced by ground-Rydberg decoherence of the control qubit in a two-qubit Rydberg-blockade gate. Phys. Rev. Appl., 15, 054020(2021).

    [25] J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, A. M. Steinberg. Observation of a large, resonant, cross-Kerr nonlinearity in a cold Rydberg gas. Phys. Rev. Res., 1, 033193(2019).

    [26] C. Chen, F. Yang, X. Wu, C. Shen, M. K. Tey, L. You. Two-color optical nonlinearity in an ultracold Rydberg atom gas mixture. Phys. Rev. A, 103, 053303(2021).

    [27] M. Moreno-Cardoner, D. Goncalves, D. E. Chang. Quantum nonlinear optics based on two-Rydberg atom arrays(2021).

    [28] S. Baur, D. Tiarks, G. Rempe, S. Dürr. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett., 112, 073901(2014).

    [29] W. Li, I. Lesanovsky. Coherence in a cold-atom photon switch. Phys. Rev. A, 92, 043828(2015).

    [30] H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, S. Hofferberth. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Fórster resonances. Nat. Commun., 7, 12480(2016).

    [31] C. R. Murray, T. Pohl. Coherent photon manipulation in interacting atomic ensembles. Phys. Rev. X, 7, 031007(2017).

    [32] D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe. Single-photon transistor using a Förster resonance. Phys. Rev. Lett., 113, 053602(2014).

    [33] F. Ripka, H. Kübler, R. Löw, T. Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362, 446(2018).

    [34] Y. Silberberg. Collapse of optical pulses. Opt. Lett., 15, 1282(1990).

    [35] Y. S. Kivshar, G. P. Agrawal. Optical Solitons: From Fibers to Photonic Crystals(2006).

    [36] M. Belić, N. Petrović, W.-P. Zhong, R.-H. Xie, G. Chen. Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett., 101, 123904(2008).

    [37] Y. V. Kartashov, B. A. Malomed, L. Torner. Solitons in nonlinear lattices. Rev. Mod. Phys., 83, 247(2011).

    [38] Q. Zhang, Z. Bai, G. Huang. Fast-responding property of electromagnetically induced transparency in Rydberg atoms. Phys. Rev. A, 97, 043821(2018).

    [39] S. Mauger, J. Millen, M. P. A. Jones. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency. J. Phys. B, 40, F319(2007).

    [40] [40] The frequency and wave number of the probe field are given by ωp+ω and kp+K(ω), respectively. Thus, ω=0 corresponds to the center frequency of the probe field.

    [41] Z. Chen, G. Huang. Trapping of weak signal pulses by soliton and trajectory control in a coherent atomic gas. Phys. Rev. A, 89, 033817(2014).

    [42] [42] In the related numerical simulation, a 10% random disturbance has been added into the initial condition.

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Xiujia Dong, Yao Ding, Zhengyang Bai, Guoxiang Huang. Magnetic-field-induced deflection of nonlocal light bullets in a Rydberg atomic gas[J]. Chinese Optics Letters, 2022, 20(4): 041902

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Dec. 15, 2021

    Accepted: Jan. 25, 2022

    Posted: Jan. 26, 2022

    Published Online: Mar. 1, 2022

    The Author Email: Zhengyang Bai (zhybai@lps.ecnu.edu.cn), Guoxiang Huang (gxhuang@phy.ecnu.edu.cn)

    DOI:10.3788/COL202220.041902

    Topics