Infrared and Laser Engineering, Volume. 49, Issue 12, 20201077(2020)

Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (Invited)

Haixia Tong1, Cunzhu Tong2, Ziye Wang1, Huanyu Lu1, Lijie Wang2, Sicong Tian2, and Lijun Wang2
Author Affiliations
  • 1State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    References(38)

    [2] [2] YuChia Chang, Larry A Coldren, YuChia Chang. Design Perfmance of HighSpeed VCSELs[M]VCSELs. Berlin: Springer, 2013.

    [3] [3] Philip Moser. Energy efficient oxide confined VCSELs f optical interconnects in data centers supercomputers[D]. Berlin: Technical University of Berlin, 2015: 4052.

    [6] B J Thibeault, K Bertilsson, E R Hegblom. High-speed charateristics of low-optical loss oxide-apertured vertical-cavity lasers. IEEE Photonics Technology Letters, 9, 11-13(1997).

    [8] L Justin, V Siddharth, T V Antony. Scaling VCSEL-MMF links to 1 Tb/s using short wavelength division multiplexing. J Lightwave Technol, 36, 4138-4145(2018).

    [9] L Sun, C Wang, J Du. Dyadic probabilistic shaping of PAM-4 and PAM-8 for cost-effective VCSEL-MMF optical interconnection. IEEE Photonics J, 11, 1-11(2019).

    [11] [11] Szczerba K, Karlsson M, rekson P, et al. 35.2 Gbits 8PAM transmission over 100 m of MMF using an 850 nm VCSEL[C]European Conference & Exhibition on Optical Communication, 2013.

    [12] [12] Thomas Aggerstam, Rickard M von Wuertemberg, Christine Runnstroem, et al. Large aperture 850 nm oxideconfined VCSELs f 10 Gbits data communication[C]Proc SPIE, 2002, 4649: 19–24.

    [16] P Westbergh, R Safaisini, E Haglund. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s. Electron Lett, 48, 1145-1147(2012).

    [17] [17] Liu M, Wang C Y, Feng M, et al. 50 Gbs errfree data transmission of 850 nm oxideconfined VCSELs[C]Optical Fiber Communication Conference, 2016.

    [18] [18] Kuchta D M, Rylyakov A V, Doany F E, et al. 70+Gbs VCSELbased multimode fiber links[C]Compound Semiconduct Integrated Circuit Symposium. IEEE, 2016.

    [20] [20] Wang H, Qiu J, Yu X, et al. 85°C operation of 850 nm VCSELs deliver a 42 Gbits errfree data transmission f 100 meter MMF link[C]2018 Optical Fiber Communications Conference Exposition (OFC). IEEE, 2018.

    [21] [21] Wu C H, Huang T Y, Qiu J, et al. 50 Gbits errfree data transmission using a NRZOOK modulated 850 nm VCSEL[C]2018 European Conference on Optical Communication (ECOC), 2018.

    [23] [23] Wun J M, Shi J W, Yan J C, et al. Oxiderelief Zndiffusion 850 nm verticalcavity surfaceemitting lasers with extremely small power consumption large bit ratedistance product f 40 Gbitsec operations[C]Optical Fiber Communication Conference & Exposition & the National Fiber Optic Engineers Conference. IEEE, 2013.

    [24] S Hu, X He, Y He. Impact of damping on high speed 850 nm VCSEL performance. Journal of Semiconductors, 39, 51-54(2018).

    [25] [25] Szczerba Krzysztof, Westbergh Petter, Karout Johnny, et al. 30 Gbits 4PAM transmission over 200 m of MMF using an 850 nm VCSEL.[C]European Conference Exhibition on Optical Communication, 2011.

    [27] K Szczerba, T Lengyel, M Karlsson. 94-Gbit/s 4-PAM using an 850 nm VCSEL, pre-emphasis, and receiver equalization. IEEE Photon Technol Lett, 22, 2519-2521(2016).

    [28] M Castro Jose, Pimpinella Rick, Kose Bulent. 48.7 Gbit/s 4-PAM transmission over 200 m of high bandwidth MMF using an 850 nm VCSEL. IEEE Photon Technol Lett, 27, 1799-1801(2015).

    [29] Manuel Castro Jose, Pimpinella Rick, Kose Bulent. Investigation of 60 Gbit/s 4-PAM using an 850 nm VCSEL and multimode Fiber. J Lightwave Technol, 33, 3825-3826(2016).

    [30] [30] Sun Y, Lingle R, Shubochkin R, et al. 51.56 Gbits SWDM PAM4 transmission over next generation wide b multimode optical fiber[C]Optical Fiber Communication Conference. IEEE, 2016.

    [31] [31] Grzegz Stepniak, Lukasz Chchos, Mikel Agustin, et al. Up to 108 Gbits PAM 850 nm multi single mode VCSEL transmission over 100 m of multi mode Fiber[C]Ecoc, European Conference on Optical Communication. VDE, 2016.

    [32] [32] Lavrencik J, Varughese S, Gustavsson J S, et al. 100 Gbits PAM4 Transmission over 100 m OM4 Wideb Fiber using 850 nm VCSELs[C]Ecoc, European Conference on Optical Communication, 2016.

    [34] L Justin, V Siddharth, T V Antony. Scaling VCSEL MMF Links to 1 Tb/s using short wavelength division multiplexing. J. Lightwave Technol., PP, 1-1(2018).

    [35] [35] Hecht U, Nikolay Ledentsov, Lukasz Chchos, et al. 120 Gbits multimode fiber transmission realized with feed fward equalization using 28 GHz 850 nm VCSELs[C]45th European Conference on Optical Communication (ECOC 2019). IET, 2019.

    [36] Yi Huang Cheng, Yung Wang Huai, Yen Peng Chun. Multimode VCSEL enables 42 GBaud PAM-4 and 35 GBaud 16-QAM OFDM for 100 m OM5 MMF data link. IEEE Access, 8, 36963-36973(2020).

    [37] 杨卓凯, Zhuokai Yang, 田思聪, Sicong Tian, Gunter Larisch, Gunter Larish. High-speed vertical-cavity surface-emitting laser based on PAM4 modulation. Chinese Journal of Luminescence, 41, 399-413(2020).

    [38] [38] Gebrewold S A, Josten A, Baeuerle B, et al. PAM8 108 Gbits transmission using an 850 nm multimode VCSEL[C]Lasers & Electrooptics Europe & European Quantum Electronics Conference. IEEE, 2017.

    [39] L Sun, C Wang, J Du. Dyadic probabilistic shaping of PAM-4 and PAM-8 for cost-effective VCSEL-MMF optical interconnection. IEEE Photon J, 11, 1-11(2019).

    CLP Journals

    [1] Qiuhua Wang, Ming Li, Pingping Qiu, Wei Pang, Yiyang Xie, Qiang Kan, Chen Xu. Study of high-temperature operating oxide-confined 894 nm VCSEL with fundamental transverse mode emission[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G007

    [2] Jiawei Chen, Yudong Li, Liya Ma, Yu Li, Qi Guo. Radiation effect of 850 nm vertical-cavity surface-emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210326

    [3] Zhaoai Yan, Xiong Hu, Wenjie Guo, Shangyong Guo, Yongqiang Cheng, Bingyan Zhang, Zhifang Chen, Weibo Zhao. Near space Doppler lidar techniques and applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210100

    [4] Mengya Zong, Jingjing Dai, Wei Li, Congyang Wen, Tong Zhang, Zhiyong Wang. Study on proton implantation isolation of GaAs-based devices[J]. Infrared and Laser Engineering, 2022, 51(12): 20220141

    Tools

    Get Citation

    Copy Citation Text

    Haixia Tong, Cunzhu Tong, Ziye Wang, Huanyu Lu, Lijie Wang, Sicong Tian, Lijun Wang. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201077

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Advanced Laser Technology

    Received: Sep. 5, 2020

    Accepted: --

    Published Online: Jan. 14, 2021

    The Author Email:

    DOI:10.3788/IRLA20201077

    Topics