Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 4, 424(2024)
Stochastic Testing method of arbitrary distributions and applicationin random field line coupling analysis
[1] [1] MANFREDI P, GINSTE D V, STIEVANO I S, et al. Stochastic transmission line analysis via polynomial chaos methods: an overview[J]. IEEE Electromagnetic Compatibility Magazine, 2017,6(3):77-84. doi:10.1109/NEMO.2015.7415076.
[2] [2] STIEVANO I S, MANFREDI P, CANAVERO F G. Stochastic analysis of multiconductor cables and interconnects[J]. IEEE Transactions on Electromagnetic Compatibility, 2011,53(2):501-507. doi:10.1109/TEMC.2011.2119488.
[3] [3] ROBERT C P,CASELLA G,CASELLA G. Introducing Monte Carlo methods with R[M]. New York:Springer, 2010. doi:http://dx.doi.org/10.1111/j.1467-985X.2012.01045_11.x.
[4] [4] ZHANG Zheng, EL-MOSELHY T A, ELFADEL I M, et al. Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013,32(10):1533-1545. doi:10.1109/TCAD.2013.2263039.
[5] [5] MANFREDI P,VANDE-GINSTE D,DE-ZUTTER D, et al. Generalized decoupled polynomial chaos for nonlinear circuits with many random parameters[J]. IEEE microwave and Wireless Components Letters:A Publication of the IEEE Microwave Theory and Techniques Society, 2015,25(8):505-507. doi:10.1109/LMWC.2015.2440779.
[6] [6] GOSSYE M, GORDEBEKE G J, KAPUSUZ K Y, et al. Uncertainty quantification of waveguide dispersion using sparse grid stochastic testing[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2485-2494. doi: 10.1109/TMTT.2020.2988458.
[8] [8] CHORDIA A, TRIPATHI J N. Uncertainty quantification of RF circuits using stochastic collocation techniques[J]. IEEE Electromagnetic Compatibility Magazine, 2022,11(1):45-56. doi:10.1109/MEMC.2022.9780345.
[9] [9] XIU Dongbin,KARNIADAKIS G E .The Wiener—Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002,24(2):619-644. doi:10.1137/S1064827501387826.
[10] [10] ELDRED M S. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design[C]// The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics. Palm Springs,Califormia:[s.n.], 2009:1-37. doi:10.2514/6.2009-2274.
[11] [11] FEI Zhouxiang,HUANG Yi,ZHOU Jiafeng,et al. Uncertainty quantification of crosstalk using stochastic reduced order models[J].IEEE Transactions on Electromagnetic Compatibility, 2017,59(1):228-239. doi:10.1109/TEMC.2016.2604361.
[12] [12] WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos[C]// The 44th Aiaa Aerospace Sciences Meeting & Exhibit. Reno,NV,USA:[s.n.], 2013:1-17. doi:10.2514/6.2006-896.
[13] [13] CHEN Weiwei, GAO Xianke, ZHOU Shihua, et al. Least Squares Polynomial Chaos Regression for Stochastic Analysis of Transmission Lines Without and With Noise[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2023,13(5):675-687. doi:10.1109/TCPMT.2023.3279128.
[14] [14] SANDU A, SANDU C, AHMADIAN M. Modeling multibody systems with uncertainties. part I: theoretical and computational aspects[J]. Multibody System Dynamics, 2006,15(4):369-391. doi:10.1007/s11044-006-9007-5.
[15] [15] AGRAWAL A, PRICE H J, GURBAXANI S H, et al. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1980, 22(2): 432-435. doi: 10.1109/APS.1980.1148283.
Get Citation
Copy Citation Text
ZHANG Yiying, CHEN Weiwei, YAN Liping, ZHAO Xiang. Stochastic Testing method of arbitrary distributions and applicationin random field line coupling analysis[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(4): 424
Category:
Received: Dec. 22, 2023
Accepted: --
Published Online: Aug. 21, 2024
The Author Email: Xiang ZHAO (zhaoxiang@scu.edu.cn)