Optics and Precision Engineering, Volume. 30, Issue 16, 2006(2022)
Fusion of fractal geometric features Resnet remote sensing image building segmentation
[1] W F ZHAO, C PERSELLO, A STEIN. Building instance segmentation and boundary regularization from high-resolution remote sensing images, 3916-3919(2020).
[2] A TROYA-GALVIS, P GANÇARSKI, L BERTI-ÉQUILLE. Remote sensing image analysis by aggregation of segmentation-classification collaborative agents. Pattern Recognition, 73, 259-274(2018).
[3] S LAKSHMI, D V SANKARANARAYANAN. A study of edge detection techniques for segmentation computing approaches. International Journal of Computer Applications, 35-41(2010).
[4] R ADAMS, L BISCHOF. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 641-647(1994).
[5] [5] 5李静. 基于NMI特征的遥感影像线性迭代聚类超像素分割算法[J]. 光学 精密工程, 2022, 30(6): 734-742.LIJ. SLIC super-pixel segmentation algorithm base on NMI features used in remote sensing image[J]. Opt. Precision Eng., 2022, 30(6): 734-742.(in Chinese)
[6] J LONG, E SHELHAMER, T DARRELL. Fully convolutional networks for semantic segmentation, 3431-3440(2015).
[7] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).
[8] L C CHEN, G PAPANDREOU, I KOKKINOS et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[9] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 9351(2015).
[10] S X ZHENG, J C LU, H S ZHAO et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, 6877-6886(2021).
[11] Z L HUANG, Y C WEI, X G WANG et al. AlignSeg: feature-aligned segmentation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 550-557(2022).
[12] H S ZHAO, J P SHI, X J QI et al. Pyramid scene parsing network, 6230-6239(2017).
[13] [13] 13王曦, 于鸣, 任洪娥. UNET与FPN相结合的遥感图像语义分割[J]. 液晶与显示, 2021, 36(3): 475-483. doi: 10.37188/CJLCD.2020-0116WANGX, YUM, RENH E. Remote sensing image semantic segmentation combining UNET and FPN[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(3): 475-483.(in Chinese). doi: 10.37188/CJLCD.2020-0116
[14] [14] 14沈言善, 王阿川. 基于深度学习的遥感图像地物分割方法[J]. 液晶与显示, 2021, 36(5): 733-740. doi: 10.37188/CJLCD.2020-0294SHENY S, WANGA C. Remote sensing image feature segmentation method based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 733-740.(in Chinese). doi: 10.37188/CJLCD.2020-0294
[15] X X ZHENG, T CHEN. Segmentation of high spatial resolution remote sensing image based on U-net convolutional networks, 2571-2574(2020).
[16] H HOSSEINPOOR, F SAMADZADEGAN. Convolutional neural network for building extraction from high-resolution remote sensing images, 1-5(2020).
[17] J M REN, L TONG, Y X LI et al. Improved unet combining dropout and ACNET for remote sensing image change detection, 4380-4383(2021).
[18] [18] 18陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MAC, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672
[19] Y L BAO, Y F ZHENG. Based on the improved Deeplabv3 + remote sensing image semantic segmentation algorithm, 717-720(2021).
[20] S M PAN, Y L TAO, C C NIE et al. PEGNet: progressive edge guidance network for semantic segmentation of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 18, 637-641(2021).
[21] F PAN, Z B WU, Q LIU et al. DCFF-net: a densely connected feature fusion network for change detection in high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11974-11985(14).
[22] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[23] [23] 23王宇, 杨艺, 王宝山, 等. 深度神经网络条件随机场高分辨率遥感图像建筑物分割[J]. 遥感学报, 2019, 23(6): 1194-1208. doi: 10.11834/jrs.20198141WANGY, YANGY, WANGB S, et al. Building segmentation in high-resolution remote sensing image through deep neural network and conditional random fields[J]. Journal of Remote Sensing, 2019, 23(6): 1194-1208.(in Chinese). doi: 10.11834/jrs.20198141
[24] [24] 24徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7): 1588-1599. doi: 10.37188/ope.20202807.1588XUS J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Opt. Precision Eng., 2020, 28(7): 1588-1599.(in Chinese). doi: 10.37188/ope.20202807.1588
[25] Q ZHAO, J H LIU, Y W LI et al. Semantic segmentation with attention mechanism for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2021).
[26] A P PENTLAND. Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 661-674(1984).
[27] M IVANOVICI. Fractal dimension of color fractal images with correlated color components. IEEE Transactions on Image Processing, 29, 8069-8082(2020).
[28] X X YAO, Q WU, P ZHANG et al. Weighted adaptive image super-resolution scheme based on local fractal feature and image roughness. IEEE Transactions on Multimedia, 23, 1426-1441(2021).
[29] P Q WANG, P F CHEN, Y YUAN et al. Understanding convolution for semantic segmentation, 1451-1460(2018).
[30] N SARKAR, B B CHAUDHURI. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems, Man, and Cybernetics, 24, 115-120(1994).
[31] L DING, H TANG, L BRUZZONE. LANet: local attention embedding to improve the semantic segmentation of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 59, 426-435(2021).
[32] S P JI, S Q WEI, M LU. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Remote Sensing, 57, 574-586(2019).
Get Citation
Copy Citation Text
Shengjun XU, Ruoxuan ZHANG, Yuebo MENG, Guanghui LIU, Jiuqiang HAN. Fusion of fractal geometric features Resnet remote sensing image building segmentation[J]. Optics and Precision Engineering, 2022, 30(16): 2006
Category: Information Sciences
Received: Apr. 21, 2022
Accepted: --
Published Online: Sep. 22, 2022
The Author Email: ZHANG Ruoxuan (zrx1997_1@sina.com)