Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 5, 1875(2023)

Research Progress on Decarbonization Technology for Flat Glass Industry

ZHOU Wencai1...2,*, ZHOU Yun3, LIU Xiaopeng1,2, ZENG Hongjie1,2, YANG Qingquan3, WANG Chuanshen1 and GUAN Min1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(38)

    [1] [1] ROUDIER S, SANCHO L, SCALET B, et al. Best available techniques (BAT) reference document for the manufacture of glass[M]. Spain: Joint Research Centre of European Commission, 2013: 93.

    [2] [2] ZIER M, STENZEL P, KOTZUR L, et al. A review of decarbonization options for the glass industry[J]. Energy Conversion and Management: X, 2021, 10: 100083.

    [3] [3] SCHMITZ A, KAMISKI J, MARIA SCALET B, et al. Energy consumption and CO2 emissions of the European glass industry[J]. Energy Policy, 2011, 39(1): 142-155.

    [4] [4] HU P P, LI Y Z, ZHANG X Z, et al. CO2 emission from container glass in China, and emission reduction strategy analysis[J]. Carbon Management, 2018, 9(3): 303-310.

    [5] [5] GALITSKY C, WORRELL E, GALITSKY C, et al. Energy efficiency improvement and cost saving opportunities for the glass industry[EB/OL]. 2008-03-01. https://www.osti.gov/biblio/927883.

    [6] [6] HASANBEIGI A, PRICE L, ARENS M. Emerging energy-efficiency and carbon dioxide emissions-reduction technologies for the iron and steel industry[EB/OL]. 2013-01-31. https://www.osti.gov/biblio/1172118.

    [7] [7] PAPADOGEORGOS Y. Decarbonisation of the Dutch container glass industry by 2050[D]. Delft: Delft University of Technology, 2019: 37-56.

    [9] [9] BEERKENS R G C, VAN LIMPT J. Energy efficiency benchmarking of glass furnaces[M]//62nd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 23, Issue 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 93-105.

    [10] [10] LEICHER J, MRTIN M, GIESE A, et al. Investigations on the use of biogas for glass melting[C]//Proceedings of the European Combustion Meeting 2015, Budapest, Hungary, Budapest, Hungary, 2015.

    [11] [11] LEICHER J, GIESE A, GRNER K, et al. Utilization of biogas in glass melting applications[C]//Proceedings of ECOS 2015-The 28th Internationl Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Pau, France, 2015.

    [12] [12] TORRIJOS M. State of development of biogas production in Europe[J]. Procedia Environmental Sciences, 2016, 35: 881-889.

    [18] [18] STEVE G, SOVACOOL BENJAMIN K, JINSOO K, et al. Industrial decarbonization via hydrogen: a critical and systematic review of developments, socio-technical systems and policy options[J]. Energy Research & Social Science, 2021, 80: 102208.

    [19] [19] IRESON R, FULLER A, WOODS J, et al. Alternative fuel switching technologies for the glass sector[EB/OL]. 2019-11. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/866364/Phase_2_-_Glass_Futures_-_Fuel_Switching_Tech_for_Glass_Sector.

    [20] [20] ANDREWS G E, ALTAHER M A, LI H. Hydrogen combustion at high combustor airflow using an impinging jet flame stabiliser with no flashback and low NOx[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, June 11-15, 2012, Copenhagen, Denmark. 2013: 1479-1489.

    [23] [23] GARY C, RNE M. Electrifying glass production: a case study of supply chain innovation[EB/OL]. 2023-03-03. https://perspectives.se.com/blog-stream/electrifying-of-glass-production-a-case-study-of-supply-chain-innovation.

    [24] [24] CHAN Y, PETITHUGUENIN L, FLEITER T, et al. Industrial innovation: pathways to deep decarbonisation of Industry. Part 1: technology analysis[EB/OL]. 2019-01-20. https://ec.europa.eu/clima/system/files/2019-03/industrial_innovation_part_1_en.pdf.

    [25] [25] LECHTENBHMER S, NILSSON L J, HMAN M, et al., Decarbonising the energy intensive basic materials industry through electrification: implications for future EU electricity demand[J]. Energy, 2016, 115: 1623-1631.

    [26] [26] ROUDIER S, SANCHO L, SCALET B, et al., Best available techniques (BAT) reference document for the manufacture of glass[M]. Spain: Joint Research Centre of European Commission, 2013: 74.

    [27] [27] WESSELING J H, LECHTENBHMER S, HMAN M, et al., The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1303-1313.

    [30] [30] KIM H, KANG T, KAISER K, et al. Heat oxy-combustion: an innovative energy saving solution for glass industry[M]//76th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 149-155.

    [31] [31] GRNEY T, ARZAN N, KO S, et al. Oxy-fuel tableware furnace with novel oxygen-and natural gas preheating system[M]//77th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017: 73-82.

    [34] [34] LAUX S, IYOHA U, BELL R, et al. Advanced heat recovery for oxy-fuel fired glass furnaces with OptimeltTM plus technology[C]//77th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017: 83-92.

    [36] [36] FEVE. Waste heat recovery technologies largely used in the European container glass industry to optimize energy consumption and reduce CO2emissions[EB/OL]. 2023-03-03. https://feve.org/case_study/waste-heat-recovery-technologies-largely-used-in-the-european-container-glass-industry-to-optimize-energy-consumption-and-reduce-CO2-emissions/.

    [39] [39] BEERKENS R. Energy balances of glass furnaces: parameters determining energy consumption of glass melt processes[C]. Columbu: 67th Conference on Glass Problems, 2007: 102-116.

    [40] [40] HANS VAN LIMPT R B, ANDRIES HABRAKEN. Overview of methods to recover energy from flue gases of glass furnaces-Impact on glass furnace energy consumption[EB/OL]. 2023-03-03. https://www.yumpu.com/en/document/read/11461820/overview-of-methods-to-recover-energy-from-flue-glasstrend.

    [44] [44] RUE D, BROWN J T. Submerged combustion melting of glass[J]. International Journal of Applied Glass Science, 2011, 2(4): 262-274.

    [45] [45] EERE P. Energy-efficient glass melting: Submerged combustion[EB/OL]. 2004-01-01. https://www.osti.gov/biblio/1216207.

    [46] [46] STORMONT R. Electric melting and boosting for glass quality improvement[EB/OL]. 2010-09-10. http://www.electroglass.co.uk/articles/2010-09%20Electric%20Melting%20%26%20Boosting%20for%20Glass%20Quality%20Improvement.pdf.

    [47] [47] SEO K, EDGAR T F, BALDEA M. Optimal demand response operation of electric boosting glass furnaces[J]. Applied Energy, 2020, 269: 115077.

    [49] [49] FEVE. Glass is a permanent material, endlessly recyclable[EB/OL]. 2023-03-03. https://feve.org/case_study/glass-is-a-permanent-material-endlessly-recyclable/.

    [50] [50] GRAEME DEBRINCAT E B. Re-thinking the life-cycle of architectural glass[EB/OL]. 2023-03-03. https://www.arup.com/perspectives/publications/research/section/re-thinking-the-life-cycle-of-architectural-glass.

    [51] [51] GUO P W, MENG W N, NASSIF H, et al. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure[J]. Construction and Building Materials, 2020, 257: 119579.

    [52] [52] MAIER P L, DURHAM S A. Beneficial use of recycled materials in concrete mixtures[J]. Construction and Building Materials, 2012, 29: 428-437.

    [53] [53] BEERKENS R, KERS G, VAN SANTEN E. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting[M]//71st Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011: 167-194.

    [55] [55] BUDINIS S, KREVOR S, MAC DOWELL N, et al. An assessment of CCS costs, barriers and potential[J]. Energy Strategy Reviews, 2018, 22: 61-81.

    [56] [56] ZHAO T, LIU Z X. A novel analysis of carbon capture and storage (CCS) technology adoption: an evolutionary game model between stakeholders[J]. Energy, 2019, 189: 116352.

    [57] [57] EUROPE G F. Flat glass in climate-neutral Europe: triggering a virtuous cycle of decarbonisation[EB/OL]. 2020-02-06. https://glassforeurope.com/wp-content/uploads/2020/01/flat-glass-climate-neutral-europe.pdf.

    [58] [58] FURSZYFER DEL RIO D D, SOVACOOL B K, FOLEY A M, et al., Decarbonizing the glass industry: a critical and systematic review of developments, sociotechnical systems and policy options[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111885.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Wencai, ZHOU Yun, LIU Xiaopeng, ZENG Hongjie, YANG Qingquan, WANG Chuanshen, GUAN Min. Research Progress on Decarbonization Technology for Flat Glass Industry[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1875

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 28, 2023

    Accepted: --

    Published Online: Aug. 13, 2023

    The Author Email: Wencai ZHOU (zhouwencai@ctiec.net)

    DOI:

    CSTR:32186.14.

    Topics