Electro-Optic Technology Application, Volume. 37, Issue 2, 14(2022)

Advances in Research on Alexandrite Ultrafast Lasers (Invited)

YANG Yunxiao1... SUN Sijia1, YU Yang2, TIAN Wenlong1, ZHANG Dacheng1, ZHU Jiangfeng1 and et al3 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(43)

    [1] [1] GHANBARI S, MAJOR A. High power continuous-wave Alexandrite laser with green pump[J]. Laser Physics, 2016, 26(7).

    [2] [2] MUNK A, JUNGBLUTH B, STROTKAMP M, et al. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements[J]. Opt Express, 2018, 26(12): 14928-14935.

    [3] [3] PONSARDIN PL, HIGDON NS, GROSSMANN BE, et al. Optimization of the alexandrite laser tuning elements for a water vapor lidar[J]. NTRS, 1990.

    [4] [4] CLARKSON WA, SHORI RK, MUNK A, et al. Diode-pumped Alexandrite ring laser for lidar applications[J]. Solid State Lasers XXV: Technology and Devices, 2016.

    [5] [5] KARAFOLAS N, SODNIK Z, CUGNY B, et al. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions[J]. International Conference on Space Optics-ICSO 2014, 2017.

    [6] [6] STROTKAMP M, MUNK A, JUNGBLUTH B, et al. Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar[J]. CEAS Space Journal, 2019, 11(4): 413-422.

    [8] [8] LEE MC, LIN YF, HU S, et al. A split-face study: comparison of picosecond alexandrite laser and Q-switched Nd:YAG laser in the treatment of melasma in Asians[J]. Lasers Med Sci, 2018,33(8): 1733-1738.

    [9] [9] SINDY H, CHING-SHENG Y, SHYUE-LUEN C, et al. Efficacy and safety of the picosecond 755-nm alexandrite laser for treatment of dermal pigmentation in Asians-a retrospective study[J]. Lasers in medical science,2020,35(6).

    [10] [10] TANGHETTI EA. The histology of skin treated with a picosecond alexandrite laser and a fractional lens array[J]. Lasers Surg Med, 2016, 48(7): 646-652.

    [11] [11] FIBRICH M, ?ULC J, VYHLíDAL D, et al. Alexandrite spectroscopic and laser characteristic investigation within a 78-400?K temperature range[J]. Laser Physics, 2017, 27(11).

    [13] [13] SONG Y, WANG Z, YONG B, et al. 2.55 W continuous-wave 378 nm laser by intracavity frequency doubling of a diode-pumped alexandrite laser[J]. Applied Optics, 2021, 60(20).

    [14] [14] IMAI S, ITO H. Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers[J]. Quantum Electronics, IEEE Journal of 1998.

    [15] [15] PESTRYAKOV EV, ALIMPIEV AI, MATROSOV VN. Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions[J]. Quantum Electronics, 2001, 31(8): 689.

    [18] [18] GUO X, CHEN M, LI N, et al. Czochralski growth of Alexandrite crystals and investigation of their defects[J]. Journal of Crystal Growth, 1987, 83(3): 311-318.

    [20] [20] TRINDADE NM, SCALVI R, SCALVI L. Cr+3 distribution in Al1 and Al2 sites of Alexandrite (BeAl2O4: Cr3+) induced by annealing, investigated by optical spectroscopy[J]. Energy and Power Engineering, 2010, 2(1): 18-24.

    [22] [22] WALLING J, PETERSON O, MORRIS R. Tunable CW alexandrite laser[J]. IEEE Journal of Quantum Electronics,1980, 16(2): 120-121.

    [23] [23] LOIKO P, GHANBARI S, MATROSOV V, et al. Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal[J]. Optical Materials Express, 2018, 8(10).

    [24] [24] YORULMAZ I, BEYATLI E, KURT A, et al. Efficient and low-threshold Alexandrite laser pumped by a single-mode diode[J]. Optical Materials Express, 2014, 4(4).

    [25] [25] DEMIRBAS U, K?RTNER FX. Alexandrite: an attractive thin-disk laser material alternative to Yb:YAG[J]. Journal of the Optical Society of America B, 2020, 37(2).

    [26] [26] LOIKO P, MAJOR A. Dispersive properties of alexandrite and beryllium hexaaluminate crystals[J]. Optical Materials Express, 2016, 6(7).

    [27] [27] PUGH-THOMAS D, WALSH BM, GUPTA MC. Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing[J]. Applied Optics, 2010, 49(15): 2891.

    [28] [28] CHING WY, XU Y-N, BRICKEEN BK. Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4[J]. Physical Review B, 2001, 63(11).

    [29] [29] FIBRICH M, ?ULC J, JELíNKOVá H. Alexandrite microchip lasers[J]. Optics Express, 2019, 27(12).

    [30] [30] HOFFMAN HJ, KUPER JW, SHORI RK, et al. High efficiency CW green-pumped alexandrite lasers[J]. Solid State Lasers XV: Technology and Devices, 2006.

    [31] [31] BEYATLI E, BAALI I, SUMPF B, et al. Tapered diode-pumped continuous-wave alexandrite laser[J]. Journal of the Optical Society of America B, 2013, 30(12).

    [32] [32] TEPPITAKSAK A, MINASSIAN A, THOMAS GM, et al. High efficiency >26 W diode end-pumped Alexandrite laser[J]. Opt Express, 2014, 22(13): 16386-16392.

    [33] [33] OGILVY H, WITHFORED MJ, MILDREN RP, et al. Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers[J]. Applied Physics B, 2005, 81(5): 637-644.

    [34] [34] KERRIDGE-JOHNS WR, DAMZEN MJ. Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison[J]. Journal of the Optical Society of America B, 2016, 33(12).

    [35] [35] DEMIRBAS U, SENNAROGLU A, K?RTNER FX. Temperature dependence of Alexandrite effective emission cross section and small signal gain over the 25-450 °C range[J]. Optical Materials Express, 2019, 9(8).

    [36] [36] UMIT Demirbas, DUO Li JRB, ALPHAN Sennaroglu, et al. Low-cost, single-mode diode-pumped Cr:Colquiriite lasers[J]. Optics Express, 2009.

    [37] [37] DEMIRBAS U. Cr:Colquiriite lasers: current status and challenges for further progress[J]. Progress in Quantum Electronics, 2019, 68.

    [38] [38] WANG H, PAN J, MENG Y, et al. Advances of Yb:CALGO laser crystals[J]. Crystals, 2021, 11(9).

    [39] [39] LISITSYN VN, MATROSOV VN, OREKHOVA VP, et al. Generation of 0.7~0.8 μm picosecond pulses in an alexandrite laser with passive mode locking[J]. Soviet Journal of Quantum Electronics, 1982, 9(3): 607-609.

    [40] [40] R, FREY, F, et al. An actively mode-locked continuous wave Alexandrite laser[J]. Optics Communications, 1989,73(3): 232-234.

    [41] [41] CHEN YF, HUANG HY, LEE CC, et al. High-power diode-pumped Nd:GdVO4/KGW Raman laser at 578 nm[J]. Opt Lett, 2020, 45(19): 5562-5565.

    [42] [42] GHANBARI S, AKBARIi R, MAJOR A. Femtosecond Kerr-lens mode-locked Alexandrite laser[J]. Opt Express, 2016,24(13):14836-14840.

    [43] [43] GHANBARI S, FEDOROVA KA, KRYSA AB, et al. Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber[J]. Opt Lett,2018, 43(2): 232-234.

    [44] [44] CIHAN C, MUTI A, BAYLAM I, et al. 70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser[J]. Opt Lett, 2018, 43(6): 1315-1318.

    [45] [45] CIHAN C, KOCABAS C, DEMIRBAS U, et al. Graphene mode-locked femtosecond Alexandrite laser[J]. Opt Lett, 2018, 43(16): 3969-3972.

    [46] [46] MIAO R, NIE Y, WANG S, et al. Self-mode-locked alexandrite femtosecond lasers with multi-GHz repetition rates[J]. Optics Letters, 2021, 46(8).

    [47] [47] HARTER DJ, BADO P. Wavelength tunable alexandrite regenerative amplifier[J]. Applied Optics, 1988, 27(21): 4392-4395.

    [48] [48] PESSOT M, SQUIER J. Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier[J]. IEEE Journal of Quantum Electronics,1989,25(1): 61-66.

    [49] [49] HARIHARAN A, FERMANN ME, STOCK ML, et al. Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification[J]. Optics Letters, 1996, 21(2): 128-130.

    Tools

    Get Citation

    Copy Citation Text

    YANG Yunxiao, SUN Sijia, YU Yang, TIAN Wenlong, ZHANG Dacheng, ZHU Jiangfeng, et al. Advances in Research on Alexandrite Ultrafast Lasers (Invited)[J]. Electro-Optic Technology Application, 2022, 37(2): 14

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 30, 2021

    Accepted: --

    Published Online: Jul. 21, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics