Electro-Optic Technology Application, Volume. 37, Issue 2, 14(2022)
Advances in Research on Alexandrite Ultrafast Lasers (Invited)
[1] [1] GHANBARI S, MAJOR A. High power continuous-wave Alexandrite laser with green pump[J]. Laser Physics, 2016, 26(7).
[2] [2] MUNK A, JUNGBLUTH B, STROTKAMP M, et al. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements[J]. Opt Express, 2018, 26(12): 14928-14935.
[3] [3] PONSARDIN PL, HIGDON NS, GROSSMANN BE, et al. Optimization of the alexandrite laser tuning elements for a water vapor lidar[J]. NTRS, 1990.
[4] [4] CLARKSON WA, SHORI RK, MUNK A, et al. Diode-pumped Alexandrite ring laser for lidar applications[J]. Solid State Lasers XXV: Technology and Devices, 2016.
[5] [5] KARAFOLAS N, SODNIK Z, CUGNY B, et al. Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions[J]. International Conference on Space Optics-ICSO 2014, 2017.
[6] [6] STROTKAMP M, MUNK A, JUNGBLUTH B, et al. Diode-pumped Alexandrite laser for next generation satellite-based earth observation lidar[J]. CEAS Space Journal, 2019, 11(4): 413-422.
[8] [8] LEE MC, LIN YF, HU S, et al. A split-face study: comparison of picosecond alexandrite laser and Q-switched Nd:YAG laser in the treatment of melasma in Asians[J]. Lasers Med Sci, 2018,33(8): 1733-1738.
[9] [9] SINDY H, CHING-SHENG Y, SHYUE-LUEN C, et al. Efficacy and safety of the picosecond 755-nm alexandrite laser for treatment of dermal pigmentation in Asians-a retrospective study[J]. Lasers in medical science,2020,35(6).
[10] [10] TANGHETTI EA. The histology of skin treated with a picosecond alexandrite laser and a fractional lens array[J]. Lasers Surg Med, 2016, 48(7): 646-652.
[11] [11] FIBRICH M, ?ULC J, VYHLíDAL D, et al. Alexandrite spectroscopic and laser characteristic investigation within a 78-400?K temperature range[J]. Laser Physics, 2017, 27(11).
[13] [13] SONG Y, WANG Z, YONG B, et al. 2.55 W continuous-wave 378 nm laser by intracavity frequency doubling of a diode-pumped alexandrite laser[J]. Applied Optics, 2021, 60(20).
[14] [14] IMAI S, ITO H. Long-pulse ultraviolet-laser sources based on tunable alexandrite lasers[J]. Quantum Electronics, IEEE Journal of 1998.
[15] [15] PESTRYAKOV EV, ALIMPIEV AI, MATROSOV VN. Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions[J]. Quantum Electronics, 2001, 31(8): 689.
[18] [18] GUO X, CHEN M, LI N, et al. Czochralski growth of Alexandrite crystals and investigation of their defects[J]. Journal of Crystal Growth, 1987, 83(3): 311-318.
[20] [20] TRINDADE NM, SCALVI R, SCALVI L. Cr+3 distribution in Al1 and Al2 sites of Alexandrite (BeAl2O4: Cr3+) induced by annealing, investigated by optical spectroscopy[J]. Energy and Power Engineering, 2010, 2(1): 18-24.
[22] [22] WALLING J, PETERSON O, MORRIS R. Tunable CW alexandrite laser[J]. IEEE Journal of Quantum Electronics,1980, 16(2): 120-121.
[23] [23] LOIKO P, GHANBARI S, MATROSOV V, et al. Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal[J]. Optical Materials Express, 2018, 8(10).
[24] [24] YORULMAZ I, BEYATLI E, KURT A, et al. Efficient and low-threshold Alexandrite laser pumped by a single-mode diode[J]. Optical Materials Express, 2014, 4(4).
[25] [25] DEMIRBAS U, K?RTNER FX. Alexandrite: an attractive thin-disk laser material alternative to Yb:YAG[J]. Journal of the Optical Society of America B, 2020, 37(2).
[26] [26] LOIKO P, MAJOR A. Dispersive properties of alexandrite and beryllium hexaaluminate crystals[J]. Optical Materials Express, 2016, 6(7).
[27] [27] PUGH-THOMAS D, WALSH BM, GUPTA MC. Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing[J]. Applied Optics, 2010, 49(15): 2891.
[28] [28] CHING WY, XU Y-N, BRICKEEN BK. Comparative study of the electronic structure of two laser crystals: BeAl2O4 and LiYF4[J]. Physical Review B, 2001, 63(11).
[29] [29] FIBRICH M, ?ULC J, JELíNKOVá H. Alexandrite microchip lasers[J]. Optics Express, 2019, 27(12).
[30] [30] HOFFMAN HJ, KUPER JW, SHORI RK, et al. High efficiency CW green-pumped alexandrite lasers[J]. Solid State Lasers XV: Technology and Devices, 2006.
[31] [31] BEYATLI E, BAALI I, SUMPF B, et al. Tapered diode-pumped continuous-wave alexandrite laser[J]. Journal of the Optical Society of America B, 2013, 30(12).
[32] [32] TEPPITAKSAK A, MINASSIAN A, THOMAS GM, et al. High efficiency >26 W diode end-pumped Alexandrite laser[J]. Opt Express, 2014, 22(13): 16386-16392.
[33] [33] OGILVY H, WITHFORED MJ, MILDREN RP, et al. Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers[J]. Applied Physics B, 2005, 81(5): 637-644.
[34] [34] KERRIDGE-JOHNS WR, DAMZEN MJ. Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison[J]. Journal of the Optical Society of America B, 2016, 33(12).
[35] [35] DEMIRBAS U, SENNAROGLU A, K?RTNER FX. Temperature dependence of Alexandrite effective emission cross section and small signal gain over the 25-450 °C range[J]. Optical Materials Express, 2019, 9(8).
[36] [36] UMIT Demirbas, DUO Li JRB, ALPHAN Sennaroglu, et al. Low-cost, single-mode diode-pumped Cr:Colquiriite lasers[J]. Optics Express, 2009.
[37] [37] DEMIRBAS U. Cr:Colquiriite lasers: current status and challenges for further progress[J]. Progress in Quantum Electronics, 2019, 68.
[38] [38] WANG H, PAN J, MENG Y, et al. Advances of Yb:CALGO laser crystals[J]. Crystals, 2021, 11(9).
[39] [39] LISITSYN VN, MATROSOV VN, OREKHOVA VP, et al. Generation of 0.7~0.8 μm picosecond pulses in an alexandrite laser with passive mode locking[J]. Soviet Journal of Quantum Electronics, 1982, 9(3): 607-609.
[40] [40] R, FREY, F, et al. An actively mode-locked continuous wave Alexandrite laser[J]. Optics Communications, 1989,73(3): 232-234.
[41] [41] CHEN YF, HUANG HY, LEE CC, et al. High-power diode-pumped Nd:GdVO4/KGW Raman laser at 578 nm[J]. Opt Lett, 2020, 45(19): 5562-5565.
[42] [42] GHANBARI S, AKBARIi R, MAJOR A. Femtosecond Kerr-lens mode-locked Alexandrite laser[J]. Opt Express, 2016,24(13):14836-14840.
[43] [43] GHANBARI S, FEDOROVA KA, KRYSA AB, et al. Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber[J]. Opt Lett,2018, 43(2): 232-234.
[44] [44] CIHAN C, MUTI A, BAYLAM I, et al. 70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser[J]. Opt Lett, 2018, 43(6): 1315-1318.
[45] [45] CIHAN C, KOCABAS C, DEMIRBAS U, et al. Graphene mode-locked femtosecond Alexandrite laser[J]. Opt Lett, 2018, 43(16): 3969-3972.
[46] [46] MIAO R, NIE Y, WANG S, et al. Self-mode-locked alexandrite femtosecond lasers with multi-GHz repetition rates[J]. Optics Letters, 2021, 46(8).
[47] [47] HARTER DJ, BADO P. Wavelength tunable alexandrite regenerative amplifier[J]. Applied Optics, 1988, 27(21): 4392-4395.
[48] [48] PESSOT M, SQUIER J. Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier[J]. IEEE Journal of Quantum Electronics,1989,25(1): 61-66.
[49] [49] HARIHARAN A, FERMANN ME, STOCK ML, et al. Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification[J]. Optics Letters, 1996, 21(2): 128-130.
Get Citation
Copy Citation Text
YANG Yunxiao, SUN Sijia, YU Yang, TIAN Wenlong, ZHANG Dacheng, ZHU Jiangfeng, et al. Advances in Research on Alexandrite Ultrafast Lasers (Invited)[J]. Electro-Optic Technology Application, 2022, 37(2): 14
Category:
Received: Dec. 30, 2021
Accepted: --
Published Online: Jul. 21, 2022
The Author Email:
CSTR:32186.14.